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Abstract—Runoff prediction is essential for flood forecasting,
irrigation planning, and sustainable water resource manage-
ment. However, accurate predictions can be challenging due
to the involvement of multiple variables. This paper presents
a novel Graph Convolution-based Spatial-temporal Attention
LSTM Multi-Task learning (GC-SALM) model for accurate
runoff predictions. Our approach combines a multilayer neural
network and an attention mechanism for enhanced general-
ization performance. The GC-SALM model employs spatial
attention and graph convolutional networks to discern local
and global spatial patterns, while temporal attention and LSTM
are utilized to capture temporal characteristics within extended
sequences. Experimental results reveal that the proposed model
outperforms six state-of-the-art methods in runoff prediction
and flow calibration, emphasizing its potential for real-world
hydrological applications.

Index Terms—Runoff prediction, Multi-Task Learning, Spa-
tial and temporal modeling, Graph convolutional networks

I. INTRODUCTION

Runoff prediction is a critical task [1] in hydrology and
water resources management, and it plays a vital role in
understanding the effects of climate change and urbanization
on water resources. Accurate runoff predictions [2] can help
estimate the amount of water available for human uses in
a given basin and facilitate making decisions about water
allocation, flood management, and the design and operation
of water resource infrastructures in a sustainable way. Neural
network-based models [2], [3] have gained popularity for
predicting runoff using historical data. These models can
be trained on historical data of precipitation, temperature,
and other meteorological variables, as well as information
about the land surface, such as soil type and vegetation
cover, to make predictions about future runoff. For example,
convolutional neural networks (CNNs) [4] [5] and recurrent
neural networks (RNNs) [6] can effectively predict spatio-
temporal patterns in complex systems. However, hydrological
data are spatio-temporal series, dependent on the volatility
and uncertainty of meteorological and hydrological charac-
teristics in the time dimension and the correlation in space
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dimension. They may have limitations in capturing temporal
and spatial dependencies, with RNNs lacking the ability to
capture long-term temporal dependencies and CNNs being
unable to capture non-local spatial dependencies.

Recently, researchers have been using graph convolutional
neural networks (GCNs) to model the spatial and temporal
dependencies in time series data in order to make more accu-
rate predictions by directly acting on a graph and aggregating
its structural information. For example, traffic flow prediction
can be modeled as a graph problem [7], and GCNs can be
used to capture the spatial correlation among roads. In the
field of hydrology, GCNs have shown potential in predicting
runoff. Sit et al. [8] proposed a model using Graph Convolu-
tional GRUs to predict the next 36 hours of stream flow at a
specific sensor location using information from the upstream
river network. Feng et al. [9] developed a new method that
combines GCN and LSTM to extract spatial and temporal
information from raw flood data for hydrological prediction.
However, conventional GCNs encounter challenges in cap-
turing global correlations when predicting runoff, resulting in
disconnection between hydrological stations located at distant
locations.

To overcome this issue, multi-task learning (MTL) [10]
has been introduced as a technique that simultaneously
models multiple prediction tasks by utilizing the correlation
between them. The information shared between related tasks
can improve overall predictive accuracy by training models
jointly. Sadler et al. [10] explored the benefits of modeling
two interdependent variables, daily average streamflow and
daily average stream water temperature, using multi-task deep
learning. Zhang et al. [11] proposed a Multi-task two-stream
spatiotemporal convolutional neural network for forecasting
convective storms, using radar and satellite data to learn task
correlations automatically. Their results showed that predic-
tion accuracy may be improved by jointly learning through
shared representations. Li et al. [12] proposed a multi-task
GNN to synchronously predict spatial-temporal traffic data
at different regions and their transitions by constructing
multi-task graph representations to extract multiple spatial
correlations. However, due to the complexity of the models



used in multi-task learning, designing a multi-task learning
model requires careful consideration of the relationships and
dependencies between tasks and the choice of appropriate
loss functions to balance the learning across tasks.

This work proposes a novel Graph Convolution-based
Spatial-temporal Attention LSTM Multi-Task learning (GC-
SALM) model that combines spatial attention and GCN to
identify local and global spatial patterns. Temporal attention
and LSTM are employed to capture temporal characteris-
tics of extended sequences. Our GC-SALM method, which
utilizes a multi-layer fully connected neural network and
attention mechanism, can improve prediction accuracy by
identifying similarities among related tasks in our proposed
runoff prediction models. The main contributions of this work
are:

o We propose a novel graph neural network with spatial
attention to better aggregate hydrological information
from neighboring sites. LSTM and temporal attention
modules are used to extract temporal dependencies
dynamically.

e« We propose a novel multi-task learning model that
employs a multilayer fully connected neural network
and an attention mechanism to find similarities between
related tasks and improve the prediction accuracy of
spatial and temporal input runoff data.

o We empirically show that the proposed model can effec-
tively perform the runoff prediction with high accuracy
when compared with several state-of-the-art models
using the CAMELS datasets.

The remainder of the paper is organized as follows. Section
IT presents the general framework and details of the GC-
SALM model. The experimental evaluation of the GC-SALM
is presented in Section III, and Section IV concludes our
work.

II. METHODOLOGY
A. Hydrology Spatial Graph

We consider each hydrological station as a vertex and
build a graph to establish the relationship among stations.
The hydrology Graph can be represented by G = (V, E, A),
where V' = {v1,vq,...vx} denotes hydrological stations
that are collecting the hydrological data; /' denotes the set
of edges between stations in the Hydrology Graph; A is
an adjacency matrix, and A[i, j] describes the edge weight
between station v; and v;. Therefore, the hydrological runoff
prediction [13] can be described as a graph problem.

B. Problem Statement

At the moment ¢, the input feature matrix of the network
can be represented as X; € RN*C where ¢ represents the
number of features. Our goal is to learn a mapping function
f to predict the hydrological runoff of future 7" moments
given the hydrological features and hydrological graph G of
historical n moment:

y EHD:+T) f (X(tfn):ty G) (1

where [V is the length of the historical time series and Y is
the time series needed to be predicted.

C. Proposed GC-SALM Method

We propose the Graph Convolution-based Spatial-
Temporal Attention LSTM Multi-Task Learning (GC-SALM)
model, designed for runoff prediction. The GC-SALM model
encompasses a spatial attention graph convolutional module
(SA-GCN), a temporal attention LSTM module (TA-LSTM),
and a multi-task learning module, as illustrated in Fig. 1.
Our graph convolutional module aims to capture spatial
relationships within hydrological data, while the attention
mechanism assists in identifying crucial factors that influence
runoff. This synergy results in enhanced performance and
generalization capabilities. Moreover, the GC-SALM model
can be trained to execute multiple tasks, enabling it to
utilize information from related variables for more accurate
predictions.

To effectively model the spatial correlation of runoff, it is
essential to establish a topological structure for hydrological
stations. Given that river flow states are dynamic and evolve
over time, representing these fluctuations through graph
nodes while maintaining a fixed graph structure is crucial.
Developing a hydrological topology necessitates a thorough
evaluation of both hydrological and statistical knowledge.
From a hydrological standpoint, closely situated stations are
more likely to influence each other’s hydrological conditions.
Statistically, the correlation between stations can be quanti-
fied using historical data acquired from various hydrological
stations. We employ Pearson’s correlation coefficient to de-
termine the inter-station correlation. Our hydrological spatial
graph generation module computes these correlations based
on flow rates per unit of time for the previous three years.
Subsequently, the adjacency matrix A is constructed as shown
in
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where p; ; is the Pearson correlation result between station 4
and station j. Utilizing matrix A, we can obtain the adjacent
edges and nodes. This allows us to generate the hydrological
topology graph, which provides a visual representation of the
connections between nodes in the network.

D. Spatial Attention Graph Convolutional Network Module

We know that the influences from other stations can vary,
depending on the specific runoff conditions. For instance, the
impact of one station on others might be more pronounced
when the basin hosting the station undergoes heavy precipi-
tation. Therefore, we employ the spatial attention mechanism
[13] to extract spatial correlations, S , of flow series between
stations, as given by
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Fig. 1: Overview of the proposed GC-SALM architecture, where FNN stands
for Feedforward Neural Network.
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where X € RVXEXT js the input of the spatial attention
block. N denotes the number of nodes in the hydrological
network, C denotes the number of input data channels, and
T denotes the length of time slices. The trainable parameters
include U; € RT, U, € RC*T Us; ¢ RC, W, and
bs € RV*N_ while o(-) denotes the sigmoid activation
function. The spatial attention matrix, S € RV*¥ is com-
puted based on the current layer input. When performing
graph convolution on the hydrographic graph, S is calculated
alongside the adjacency matrix A to adjust the graph nodes’
weights. The value of S;; in S indicates the correlation
degree between node ¢ and j.

The hydrological data exhibit non-linear and complex
characteristics, making it suitable for representation as graph-
structured data. All hydrological station points within the
river network can be treated as nodes, with each node’s
features considered as signals on the graph. To thoroughly
extract the topological features of the river network, the input,
adjusted by the attention mechanism, is fed into the spatio-
temporal convolution module for a graph convolution oper-
ation. Graph convolution is a critical process for extracting
a node’s features based on its structural information. The
spatio-temporal convolution module proposed in this study
encompasses a graph convolution in the spatial dimension,
which captures spatial dependencies from the neighboring
nodes.

In classical convolution operations, the Graph Convolu-
tional Network (GCN) model can be constructed by stacking
multiple convolutional layers given by

HH) =4 (LHU)W(”) @

where L is the normalized form of the Laplacian matrix, H 0
is the output of [ layer, W) contains the parameters of that
layer. Nonetheless, the convolution kernel may not be highly
effective in processing complex graph models. When the
graph scale is large, directly performing eigenvalue decom-
position on the Laplacian matrix becomes computationally

expensive. Computational complexity can be significantly
reduced by utilizing a graph convolution kernel approximated
with Chebyshev polynomials [14]. The equation for graph
convolution using Chebyshev polynomials can be expressed
as:

K—-1
o = go(L)z = Y OLTi(L)w (5)
k=0

where *g denotes a graph convolution operation, 6 are
the filter coefficients, T} (L) are the Chebyshev polynomials
of degree k evaluated at the normalized graph Laplacian
fj, which is a rescaled version of the Laplacian matrix L,
z is the input signal. Using the approximate expansion of
the Chebyshev polynomial to solve this formulation involves
extracting information about the neighboring nodes centered
around each node in the graph via the convolution kernel. The
embedded spatial attention matrix facilitates the enhancement
of graph convolution for the extraction and enhancement
of spatiotemporal dynamic features of the river network.
Therefore, we associate Tj(L) with the spatial attention
matrix S,, € RN*N to obtain the combined polynomial
Tk(i) ® Sy, where © is the Hadamard product. The input
is X, = (z1,72, -+ ,o7) € RVXCXT and let t € [1,T),
where C,; denotes the number of feature channels of each
node. Thus, Equation 5 can be rewritten as the following

equation at time ¢:

K—1
9oxGTy = Z 0xTi(L © S,y (6)
k=0

where S, is the matrix of spatial attention computed by
Xg. The spatial attention matrix can be adjusted dynamically
using the convolution formula provided. This formula enables
the correlation between the nodes to be modified in a flexible
manner. The output of the spatial attention graph convolu-
tional block, denoted by X, employs the ReLU activation
function:

X, = ReLU (g Tt) @)

In summary, the spatial attention and convolution modules
comprise the spatial attention graph convolutional block,
which is followed by a fully connected layer to maintain
output consistency. The block output is then passed to the
temporal attention LSTM module for further processing. This
methodology can effectively capture temporal information
and improve the performance of the model.

E. Temporal Attention LSTM Module

The spatial attention graph convolutional module places
a high priority on capturing the topological structure of
hydrological networks. To process the sequence information
and capture time dependencies, we utilize an LSTM and
generate a hidden representation for each time step. However,
given the known issue of long-term information loss [6] in
traditional LSTM models, this poses a significant challenge
in the context of modeling flooding processes, which exhibit
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Fig. 2: Illustration of (a) the SA-GCN and (b) the TA-LSTM modules
used in the training process. To enhance the robustness of the model, the
DropEdge mechanism is employed, which randomly removes edges of a
fixed proportion p in the original hydrology graph during each training
iteration.

seasonality and periodicity and require careful consideration
of long-term dependencies. In response to this challenge,
we introduce temporal attention as a means of improving
the model’s capacity to assign weight to critical timing
features and enhance prediction accuracy. Specifically, we
input X, = (21, 2%, - -, z%) to the temporal attention LSTM
module and represent the hidden layer output in the LSTM
network as a stacking matrix, Hf* = (hf nft ... Bl ).
To calculate the attention weights «; at each time step,
we employ a scoring function in our attention mechanism,
denoted by

ay = AttenScore (H[, b)) (3

where H[ is the stacking matrix of hidden layer output
in the LSTM network, and h% | is the last hidden layer
output. A scoring function is used to determine the similarity
between these two representations, which may be in the form
of additive functions, dot product functions, cosine functions,
or other similarity measures commonly used in the attention
mechanism. In this study, we employ dot product functions.
The final output of the temporal attention module is a linear
combination of the weighted vector ¢; and the last hidden
layer output A |, which is obtained through a linear mapping
operation given by

hft = LSTM(RE )
Ct = Ht Qg (9)
hP = WieshE ] +b

To obtain the complete output of the output gate within the
range, we concatenate the entire time slice to form the output

matrix, denoted by H; = (hP hD,.-- [ hR) € RN XC"xT
The final output of the module is then obtained through the
application of the ReLU activation function. This method-
ology enables the model to effectively capture and process
temporal information, enhancing its predictive capacity and
overall performance in a variety of applications.
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Fig. 3: Multi-Task Learning Module

F. Multi-Task Learning Module

Hydrological modeling has traditionally focused on devel-
oping models to predict a single variable. This study proposes
a novel approach that utilizes multi-task learning (MTL) to
learn two related hydrologic variables simultaneously. Our
approach acknowledges the interconnected nature of hydro-
logical variables to improve prediction accuracy. Specifically,
we focus on streamflow and rainfall as the two variables of
interest. One of the key contributions of our work is incorpo-
rating attention mechanisms into the MTL framework. The
attention mechanisms [15] allows the model to learn task-
specific inputs by capturing commonalities between related
variables, as defined by

QK"

att

Att(Q, K, V) = Softmax < ) -V (10)
where the scaling of attention mechanisms on values V' is
based on the relationships between keys K and queries Q).
Here, V' represents the output of a specific variable, such
as flow, while K represents the output of an interrelated
variable, such as rainfall. Similarly, () represents the output
of the task-shared module, which combines the outputs of a
single variable and passes them into the FNN. Equation (10)
determines the size of the attention weights based on the task
and shared representations. These weights enable the model
to focus only on the part of the task-specific input relevant
to runoff prediction.

III. EXPERIMENT
A. Experimental Setup

1) Datasets Description: We utilize the CAMELS dataset
[16], which provides catchment attributes and meteorological
data for 671 catchments across the contiguous United States
and includes precipitation and streamflow observations. Our
experiments use Catchment units 01 (New England) and 04



TABLE I: PERFORMANCE OF DIFFERENT MODELS AT 01 BASIN AND 04 BASIN

” 01 04
T | Metric HA  ARIMA TGCN ST-GCN H-GCN LSTM  GC-SALM HA  ARIMA TGCN ST-GCN H-GCN LSTM  GC-SALM
MAE | 285546 206807 183601 190251 220329 173921 171174 | 148.155 I[I1.10I  93.123 104321 117.265 97.361 88.394
3 | RMSE | 348.081 384313 336448 352454 372.118 343355 328213 18254 342518 158.908  168.683  187.245 165211  146.567
R? 0.558 0.905 0.98 0.979 0.928 0.981 0.982 0.81 0.056 0.95 0.914 0.693 0.942 0.954
MAE | 285546 206807 224.612 217.196  285.744 221366 206425 | 148.155 111.101 116481 119594 177552 121358  108.792
6 | RMSE | 348.081 384313 351447 355315 413.654 358444  343.251 18254 342518 188.112 195109 247.349  189.839  179.768
R? 0.558 0.656 0.749 0.859 0317 0.862 0.885 0.81 0.056 0.922 0.894 0.539 0.924 0.931
(Great Lakes), containing 26 and 23 hydrological stations, approach.

respectively. CAMELS is managed by the National Center
for Atmospheric Research (NCAR) and has a relatively low
anthropogenic influence. In our experiments, we partitioned
the data into training (79%), validation (1%), and testing
sets (20%). To ensure consistency in the orders of magnitude
between different features and preserve the original trend of
the time series data, we standardized the data using the Z-
score method.

2) Experimental Settings: The experiments were con-
ducted on a Linux server with an Intel(R) Xeon(R) CPU E5-
2640 v4, 32GB RAM, and an Nvidia GeForce GTX 2080Ti.
We implemented the GC-SALM algorithm using the PyTorch
framework and evaluated its performance using a 32-day
historical time window to forecast hydrology conditions for
the next 3 and 6 days. We set K=3 and p=0.6 based on
experimental performance and practical considerations. In
the training phase, we used a learning rate of 0.0001 and
a batch size of 64. To evaluate the performance of the
models, we used three commonly used metrics: MAE (mean
absolute error), RMSE (root mean square error), and R?
(coefficient of determination). A smaller value for both MAE
and RMSE indicates better performance, while a higher R?
value typically indicates a better fitting performance of the
model. The range of R? is between 0 and 1.
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3) Baseline Methods: We compare GC-SALM with six
state-of-the-art methods.

(11

R*=1-

o HA: this method predicts future periods by taking
the weighted average of previous periods. We utilize
the average value of the last 32 time slices to make
predictions.

o« ARIMA [17]: This model combines moving average
and autoregressive techniques to predict future values in
the hydrological field, making it a classical time series
forecasting model.

o LSTM [18]: Long Short-Term Memory network, a
special RNN model.

e T-GCN [19]: This model combines the GCN and GRU
to perform time-series forecasting, making it a hybrid

e ST-GCN [20]: Spatio-temporal Graph Convolutional
Network. This method employs both graph convolu-
tion and 2D convolutional networks to capture spatial-
temporal correlations within graph data.

o H-GCN [21]:Hierarchical Graph Convolution Net-
works. This method uses a graph differentiable pool-
ing module that enables the learning of representation
capabilities between network layers and facilitates the
combination of various existing end-to-end structures.
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Fig. 4: Visualization of evaluation indicators
B. Experimental Results

1) Performance Analysis: Table I provides a comparison
between GC-SALM and six state-of-the-art models in terms
of their prediction accuracy on the CAMELS datasets for 3-
day and 6-day ahead prediction. We adjusted the parameters
of the models to achieve the best results. As expected, the
prediction errors generally increase with longer prediction
intervals, indicating that making accurate predictions be-
comes more challenging. However, our GC-SALM model
outperforms the baseline models in both basins, achieving
lower average values of RMSE, MAE, and R2. While tradi-
tional statistical methods such as ARIMA and HA have poor
generalization ability, GC-SALM shows the best performance
in short-time sequence prediction at T+3. For instance, in
the 01 basin, we calculated RMSE, MAE, and R? values of
328.213, 171.174, and 0.982, respectively. Similarly, in the 04
basin, we calculated RMSE, MAE, and R2 values of 146.567,
88.394, and 0.954, respectively. Moreover, our approach
outperforms other methods such as LSTM, T-GCN, and ST-
GCN in longer time series prediction at T+6, highlighting the
importance of assigning more weights to important timing
features and utilizing multi-task learning for flow prediction.
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Fig. 5: A comparison between the ground truth flow rates and the predicted
runoff flow rates at the Ol-basin and 04-basin from the test dataset for a
specific flood event. The time axis covers the period from October 2010 to
November 2011, with each tick representing a 50-day interval.

2) Flow Groudtruth Comparison: To provide a more
intuitive illustration of the models’ performance, we present
in Fig. 5 the predicted river flow in the 01 River Basin and
04 River Basin. The figure shows that the predicted flow
closely aligns with the ground truth at the time of T. As
the prediction time increases to T+3 and T+6, the degree of
fitting between the prediction and the ground truth gradually
decreases. Nevertheless, our model outperforms T-GCN, H-
GCN, and ST-GCN in terms of the degree of fitting at both
T+3 and T+6. Furthermore, our model is more accurate in
predicting sharp increases in the runoff flow, which allows
us to forecast natural disasters such as floods more promptly.

IV. CONCLUSION

In this paper, we proposed a new approach to improving
the accuracy of runoff prediction in hydrology and water re-
sources management. Our Graph Convolution-based Spatial-
temporal Attention LSTM Multi-Task learning (GC-SALM)
model combines spatial and temporal attention mechanisms
with graph convolutional networks and multi-task learning to
better capture the complex spatio-temporal dependencies in
hydrological data. Experimental results demonstrate that our
proposed GC-SALM model outperforms several state-of-the-
art models, showing its potential as an effective method for
predicting runoff. The proposed approach has the potential to
help in making better decisions related to water allocation,
flood management, and the design and operation of water
resource infrastructures in a sustainable way.
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