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Abstract—Federated learning (FL) enables model training on
decentralized devices while preserving data privacy. However,
data heterogeneity poses a significant challenge to FL, and
various approaches have been proposed to address it. Exist-
ing research has mainly focused on either enhancing global
models or customizing personalized models for clients. This
paper proposes a novel approach, FedCRC, that decouples
the machine learning model into a representation extractor
and predictor. This enables us to enhance both generalization
and personalization, thereby addressing the challenge of data
heterogeneity in FL. The approach employs a stable global
predictor to unify the representation learning criterion during
the training of the representation extractor. Additionally, a
personalized predictor is trained for each client to achieve
a personalized model tailored to the local data distribution.
Our FedCRC algorithm was evaluated on multiple benchmark
datasets with varying distributions, covering diverse settings.
Extensive experimental results demonstrate the effectiveness of
our method.

Index Terms—Federated Learning, Data Heterogeneity, Rep-
resentation Learning, Personalized Predictor

I. INTRODUCTION

Federated learning has emerged as a distributed machine
learning paradigm to address the challenges of decentralized
data [1]. FL enables decentralized clients to train models
using their local data collaboratively, with the protection of
data privacy. In a standard FL setup, a central server manages
the global model and selects the clients participating in the
training process. The clients then perform local updates based
on the global model and send the updated model back to the
server. However, when faced with data heterogeneity, stan-
dard FL algorithms may struggle to learn well-performing
models from clients with different data distributions, present-
ing a significant obstacle to the success of FL. To address this
challenge, novel approaches must be developed to improve
the performance of FL algorithms in data heterogeneous
settings.

Two primary paradigms have emerged to address the
problem of data heterogeneity. The initial paradigm concen-
trates on improving the performance of the global model,
as exemplified by [2]–[4], and [5]. In contrast, the second
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paradigm delves into personalized federated learning (PFL),
which endeavors to develop models tailored to local data
for each client, as illustrated by [6]–[8]. These approaches
diverge in their motivations: FL algorithms for global models
seek to bolster the model’s generalization performance, while
PFL algorithms aim to create personalized models suited
for client-specific data. However, only a handful of efforts
have simultaneously focused on enhancing the global model’s
generalization capability and developing personalized models
for individual clients.

Several studies have sought to tackle these two objec-
tives independently by segregating the model into separate
components [3], [7], [8]. Deep neural network-based models
can be split into a representation extractor associated with
representation learning and a predictor connected to specific
tasks [9]. The success of multi-task deep learning suggests
that the representation extractor is responsible for extracting
common representations, whereas the predictor is closely
connected to task-specific aspects [10]. During the model
training phase, the predictor can be regarded as a criterion
for representation learning, as it transmutes the input data’s
representation from the representation space to the data label
space [3]. However, the predictor’s susceptibility to data
distribution leads to disparate representation learning criteria
for different clients in data heterogeneity FL [11].

Figure 1 illustrates the effect of data distribution on pre-
dictors using the L2 distance of predictor parameters. The
disparity between predictors increases with the number of
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Fig. 1. L2 distance of predictors in data heterogeneous environments



updates in the data heterogeneous setting. This observation
indicates that, in FL with data heterogeneity, the model’s pre-
dictor can undergo significant alterations due to differences in
data distribution. In this scenario, two clients train predictors
based on the same pre-trained model but with different data
distributions. This experiment uses a CNN model with four
convolutional layers and one fully connected layer alongside
the MNIST dataset. Regarding data distribution settings, IID
denotes that client data are independently and identically
distributed, while Non-IID indicates that client data are
sampled from a Dirichlet distribution with β = 0.1. This
study designates the predictor as the output layer of the
model.

Building on the insights from the aforementioned experi-
mental observations, this study sets forth a novel approach to
federated learning, known as FedCRC (Federated Learning
with Common Representation Learning Criterion and Person-
alized Predictor). FedCRC seeks to elevate the performance
of both the global and personalized models. To achieve this
objective, this study adopts a stable global predictor to ensure
consistency in the representation learning criterion during the
training of the representation extractor. Each client is trained
with a personalized predictor for a tailored model. The global
predictor parameters are held constant during the training
of the representation extractor, and they remain fixed during
the joint training of the personalized and global predictors.
Additionally, an exponential moving average is applied to
the global predictor to ensure a smooth evolution of the
representation learning criterion over time and to prevent
abrupt shifts. The main contributions of our work are as
follows:

• We introduce a novel FL algorithm, FedCRC, which
leverages a common representation learning criterion to
train the model’s representation extractor while concur-
rently training a personalized predictor for each client
to achieve personalized models.

• Our algorithm effectively constructs personalized mod-
els without compromising the performance of the global
model and enables seamless integration between the
personalized and global predictors.

• Through extensive experiments on MNIST, CIFAR-10,
and CIFAR-100 datasets with different levels of data het-
erogeneity, we demonstrate that FedCRC outperforms
five cutting-edge algorithms in prediction accuracy and
generalization performance.

II. RELATED WORK

Many methods have been proposed to enhance the global
model’s performance in FL with data heterogeneity. In order
to diminish the model update bias induced by data het-
erogeneity, some methods incorporate regularization terms
within the local learning process. For instance, FedProx
[2] introduces a model parameter distance regularization
term in the local learning objective, while SCAFFOLD [12]
employs a control variable to rectify the local update gradient.
However, these methods may not fully utilize the knowledge
of local models due to the regularization terms. FedProto [4]

proposes a prototype-based FL algorithm that employs the
prototype representation of each class to guide local model
training. MOON [5] utilizes model contrastive learning to
enable the local model to learn the same representation as
the global model but with an increased computational load.
FedBABU [3] only updates the extractor of the model and ne-
glects the collaboration of different model components. Loss-
weighted FL algorithms use carefully designed loss functions
to mitigate the impact of class imbalance on the model [13],
[14]. Methods based on shared data, such as retraining the
global model using public data [15], tend to violate privacy
protection principles. It is desired to develop an approach that
capitalizes on the full potential of local model knowledge
without violating federated learning principles or increasing
the computational overhead.

Personalized federated learning aims to train models for
each client to accommodate local data distribution. FedMTL
[6] treats model training for each client as a distinct op-
timization task, while Ditto [16] applies adaptive model
dissimilarity penalization during the training process. Some
decoupling-based methods group clients with similar data
distributions and learn intra-group global models for each
client group to obtain personalized global models [17]–
[19]. However, personalized methods have to deal with
the challenge of losing the global model’s generalization
capability. Decoupling-based methods, such as FedPer [7],
divide the model into shared and personalized layers, where
each client trains the model using its own personalized layers
and aggregates only the shared layers. FedRep [8] ensures
all clients share the representation extractor but have dis-
tinct predictors and concentrate on predictor training during
local updates, resulting in the method lacking an extractor
with strong generalization performance. However, methods
that can simultaneously achieve strong generalization perfor-
mance and personalized models for each client have yet to be
fully realized, presenting an exciting opportunity for further
research and advancement.

III. METHODOLOGY

A. Problem Formulation

In the FL scenario, let us assume there are M clients.
The data Di = (xj , yj)

|Di|
j=1 of client i stems from the data

distribution Pi, where xj and yj represent the input data
and the corresponding category label of the j-th sample,
respectively. The optimization objective of standard FL [1]
can be expressed as follows:

min
ω
L(ω) =

M∑
i=1

|Di|
N

Li(ω) (1)

where ω represents the machine learning model, N =∑
i |Di| represents the sum of client sample sizes. Li(ω) is

the empirical risk loss of client i, defined as follows:

Li(ω) = E(x,y)∼Pi
[ℓ(ω;x, y)] (2)

where ℓ is the loss function for each data instance. After
the local update is completed, the server collects the client



models ωi and performs model averaging aggregation. The
aggregation equation is as follows:

ωg =

m∑
i=1

|Di|
N

ωi (3)

where ωg represents the global model and m denotes the
number of models.

In FL with heterogeneous datasets, disparate data distri-
butions can cause deviations in the client’s local learning
objective. Since clients employ diverse optimization objec-
tives to update their local models, inconsistencies among
these models emerge, and it is essential to address these
discrepancies adequately. We propose the FedCRC algorithm,
which handles the model’s representation extractor and pre-
dictor independently. Furthermore, a local predictor is utilized
for each client to obtain a personalized model. The global
predictor is also updated to make the parts of the model fit
each other.

B. Local Update Process of FedCRC

FedCRC employs a distinct approach of updating different
components of the model separately, as demonstrated in
Fig. 2 which illustrates the local update process of FedCRC.
Different with other model decoupling approaches, our ap-
proach trains the global model and the personalized model
jointly.

1) The Updating Process of Representation Extractor:
Deep neural network models can be divided into two parts:
an extractor that obtains the representation of input data
and a predictor that outputs the prediction results. Let
ω = {f(ϕ), h(θ)} denote a model, where f(ϕ) is the
representation extractor with parameter ϕ, and for input data
x, z = f(x, ϕ) is the representation vector of x. h(θ) is the
predictor with parameter θ, and for a given representation
vector z, ỹ = h(z, θ) is the prediction result of z. For ease
of presentation, we use f and h to denote f(ϕ) and h(θ),
respectively.

During the model training process, the predictor computes
the representation z and outputs a predicted label for each
data instance, and the model is updated based on the loss
between the predicted label and the true label. However, data
heterogeneity can cause different clients to have different
predictors, thus different representation learning criteria. We
use an identical global predictor hg for all client models
during the local training process to unify the representation
learning criterion across clients. In client i, the representation
extractor is optimized as follows:

f ′
g = argmin

fg
Li(fg, hg) (4)

where Li represents the empirical risk loss of client i.
2) The Updating Process of Local Predictor: While the

global model with a shared representation extractor can
achieve good generalization performance, it may not be
optimal for each client’s local data distribution. Personalized
models usually perform better on local data than global
models. Our algorithm involves jointly training all clients’
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Fig. 2. The local update steps of FedCRC. Step 1: Train the global extractor
using the fixed global predictor. Step 2: Train the local predictor using the
fixed representation extractor. Step3: Train global predictor using the fixed
representation extractor and local predictor.

shared representation extractor fg to form a global model
with a global predictor hg . This representation extractor can
effectively extract features from different data distributions
and perform better generalization. To take advantage of the
global representation extractor during the training of the
personalized model, we also train a local predictor hi for
each client using the fixed global representation extractor. By
combining the local predictor and representation extractor in
this way, our algorithm can get a personalized model for each
client without affecting the generalized performance of the
global model. Specifically, the local predictor is optimized as

h′
i = argmin

hi

Li(fg, hi) (5)

where Li represents the empirical risk loss of client i.
3) The Updating Process of Global Predictor: In cen-

tralized machine learning settings, it is common practice to
update the complete model to enhance its performance. This
highlights the significance of cooperation among different
parts of the model. In addition to optimizing the representa-
tion extractor, training a global predictor that complements
the updated extractor is crucial. Nonetheless, excessive up-
dating of the global predictor, which acts as the benchmark
for representation learning, can result in the failure of the
representation extractor to converge. Hence, it is crucial to
update the global predictor efficiently and stably.



Since personalized models often outperform global models
on individual clients, we aim to leverage the knowledge of
personalized models in our approach. To achieve this, we
use the local predictor to guide the training of the global
predictor. Specifically, we optimize the global predictor based
on two objectives: the local empirical loss and the Kullback-
Leibler (KL) divergence between the output of the local
predictor and the global predictor. Although both predictors
share the same representation extractor, they may produce
different prediction results for the same feature vector z,
with the local predictor typically having better performance.
Therefore, we use the KL divergence to quantify the differ-
ence between the two output results and strive to make the
global predictor imitate the output of the local predictor. The
optimization objective guided by the local predictor is defined
as follows:

Lh = KLoss(hg(fg(x)), hi(fg(x))) (6)

The optimization of the global predictor is defined as
follows:

h′
g = argmin

hg

[Li(fg, hg) + Lh(fg, hg, hi)] (7)

When aggregating the global predictor from different
clients, we need to consider the impact of drastic changes
in the global predictor. To ensure the stability of the global
representation learning criterion, we employ the exponential
moving average technique to aggregate the global predictor.
The exponential moving average factor τ prevents the global
predictor to forget the previous representation learning cri-
terion completely. We first compute the temporary global
predictor h′

g as follows:

h′
g =

m∑
i=1

|Di|
N

hgi (8)

The global predictor is then aggregated as follows:

ht+1
g = τht

g + (1− τ)h′
g (9)

where the t is the number of communication rounds, τ ∈
(0, 1).

C. FedCRC Algorithm

Algorithm 1 presents the complete FedCRC algorithm.
During the client’s local update process, the representation
extractor and predictor are updated independently. Initially,
the representation extractor is updated using a stable global
predictor to ensure that all clients share the same representa-
tion learning criterion. Subsequently, the extractor is used
to train the local predictor, which yields the personalized
model. Finally, the personalized model is employed to guide
the training of the global predictor, allowing efficient updates
to the global predictor due to the knowledge provided by the
personalized model. When the server aggregates the client
models, average aggregation is used for the representation
extractor to enhance its generalization ability. To prevent
sudden changes in the representation learning criterion, the

Algorithm 1: FedCRC Algorithm
Input: Client participation rate σ, communication

rounds T , number of local updates E,
exponential moving average factor τ ;

Output: Global model ωg , personal model ω1,...,ωM ;
Initialize ω0

g ← {f0
g , h

0
g}, and h0

1, · · · , h0
M ;

Let m← max(⌊σM⌋, 1);
for t = 1, 2, · · · , T do
St ← randomly sample m clients;
for client i in St do

Client i downloads f t−1
g , ht−1

g ;
Fix the parameters of ht−1

g ;
f t
g,i ← update f t−1

g with (4) for E epoch;
Fix the parameters of f t

g,i and unfix the ht−1
g ;

ht
i ← update ht−1

i with (5) for E epoch;
ht
g,i ← update ht−1

g with (7) for 1 epoch;
Client i uploads f t

g,i and ht
g,i to the server;

end
The server aggregate f t

g,i;
f t
g ← 1∑

i |Di|
∑m

i=1 |Di|f t
g,i;

Compute temporary variable h′
g;

h′
g ← 1∑

i |Di|
∑m

i=1 |Di|ht
g,i;

Use exponential moving average to get ht
g;

ht
g ← τht−1

g + (1− τ)h′
g;

end

global predictor is aggregated using an exponential moving
average for the next round.

IV. EXPERIMENTAL RESULTS

We perform experiments on multiple datasets with varying
levels of data heterogeneity to evaluate the effectiveness
of our algorithm. Our approach is compared with several
other algorithms, including FedAvg [1], FedProx [2], and
FedBabu [3], which concentrate on learning a global model.
Additionally, we compared our method with personalized
approaches, including FedPer [7] and FedRep [8].

A. Experiment Settings

1) Datasets and Models: Our experiments are conducted
on three datasets: MNIST, CIFAR-10, and CIFAR-100. For
MNIST and CIFAR-10, we are using a CNN with four
convolutional layers and one fully connected layer as the
training model. For CIFAR-100, we use ResNet18 as the
training model. For each dataset, all methods employ this
model to conduct the experiments.

2) Data Distribution: To simulate the data heterogeneity
environment, we used the Dirichlet distribution to sample
data for each client. An allocation vector q is obtained
from the Dirichlet distribution, q ∼ Dir(β), where the k-
th element of q represents the proportion of the k-th class of
data to all client data. When β →∞, it indicated a balanced
distribution of data for each category among clients. When
β → 0, it meant increased heterogeneous distribution of data.
We randomly split 80% of the client data as a training set



TABLE I
TEST ACCURACY ON MNIST, CIFAR-10, AND CIFAR-100 WITH DIFFERENT LEVELS OF DATA HETEROGENEITY

Method MNIST CIFAR-10 CIFAR-100

β = 0.1 β = 0.5 β = 1 IID β = 0.1 β = 0.5 β = 1 IID β = 0.1 β = 0.5 β = 1 IID
FedAvg [1] 98.49 98.74 98.81 99.12 56.69 68.64 71.58 75.66 32.89 38.84 40.86 44.04
FedProx [2] 98.05 98.49 98.66 99.06 55.99 66.15 68.69 72.83 28.66 30.95 32.27 32.35
FedBabu [3] 98.22 98.52 98.72 99.13 63.52 71.27 72.69 76.09 39.46 43.53 45.69 45.99
FedPer [7] 97.05 98.47 98.85 99.14 12.57 63.29 70.64 75.03 26.25 35.79 38.71 41.5
FedRep [8] 98.47 98.10 98.08 97.76 85.57 70.60 65.21 55.9 47.76 26.26 20.70 9.43

FedCRC 98.37 98.58 98.79 99.17 64.61 70.75 72.77 76.41 40.00 43.30 44.73 47.66
FedCRC-Per 99.24 99.12 99.10 99.06 79.40 77.01 76.02 75.88 48.45 44.56 43.94 45.86
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Fig. 3. Test accuracy comparison between FedCRC and FedAvg.

and the remaining 20% as a testing set. We created three data
heterogeneity distributions with β values of 0.1, 0.5, and 1
respectively, and IID data distribution.

3) Federated Learning Setting: We establish an FL en-
vironment consisting of 100 clients, with a participation
probability of 0.1 for each client in every training round.
We set the number of global communication rounds to 100,
and each client performed 5 local update epochs. SGD with
momentum is used as the model optimizer for all compared
algorithms, with a momentum of 0.9 and an initial learning
rate of 0.05. The learning rate decreases to 0.01 and 0.001
at the 50th and 75th communication rounds, respectively.
The regular term weight in FedProx is set to 0.1, and the
exponential moving average factor in our algorithm is set
to 0.99 like the target network update setting in the self-
supervised learning method [20]. Unless otherwise stated,
these parameter settings are used for all experiments.

B. Performance Analysis

We assess FedCRC’s accuracy performance and compared
it to other algorithms across multiple levels of data hetero-
geneity. The reported results in Table I show the average
top-1 test accuracy across all clients. For methods that learn
a single global model, we report the test results of the global
model, while for personalized methods, we report the test
results of the personalized model. FedCRC and FedCRC-Per
respectively denote the test results of the global model and
personalized model of our algorithm.

Our algorithm demonstrates superior accuracy compared to
other algorithms across diverse datasets with varying data dis-
tributions. Moreover, both the global and personalized models
in our algorithm exhibit excellent performance, indicating

that training the personalized model does not compromise
the performance of the global model. At the same time, the
minimal cost is required to train two models simultaneously
in our approach, specifically when training the personalized
predictor.

C. Convergence Speed

We assess the convergence speed of the FedCRC algorithm
during the training process by measuring the test accuracy
of FedCRC and FedAvg after each round of communication
under two distinct data distributions. For this experiment,
we set the client participation rate and the number of local
updates to 1. Due to the limited space of the paper, we
only present the experiment results of two algorithms. Our
results, as shown in Fig. 3, indicate that FedCRC exhibits
a faster improvement in accuracy than FedAvg under all
data distributions, suggesting that our algorithm possesses
superior convergence speed. It is worth noting that the sharp
increase in accuracy in some specific rounds is due to the
change in the learning rate.

D. Generalization to New Clients

To evaluate the generalization performance of the FedCRC
algorithm on new clients, we conduct an experiment to
report the test accuracy of both FedCRC and the comparison
algorithm on 40 clients who are not participating in the
federated learning process. For personalized methods that do
not train the global model, we aggregate the personalized
models of the clients as the global model. We select 60 clients
to participate in the federated learning process, and after the
training is completed, we test the performance of the global
model on the remaining 40 clients out of the total 100 clients.



TABLE II
CIFAR-10 TEST ACCURACY OF THE GLOBAL MODEL ON NEW CLIENTS

Method β = 0.1 β = 0.5 β = 1
FedAvg 45.47 61.58 61.74
FedProx 41.28 50.91 49.21
FedBabu 59.15 65.01 64.46
FedPer 14.25 55.85 58.30
FedRep 21.80 27.56 31.31
FedCRC 60.43 64.82 64.62

Table II presents the test results, highlighting the superior
generalization performance of FedCRC compared to other
algorithms. Conversely, the personalized method exhibits
weaker generalization performance in comparison to training
a global model. Notably, the level of data heterogeneity may
also impact the generalization performance of the global
model.

E. Effect of Exponential Moving Average Aggregation Factor

To assess the impact of the exponential moving average
factor on FedCRC, we examine the performance with various
values of τ . Since the exponential moving average process
is only applicable to the global model, we conduct this ex-
periment exclusively on the global model. Table III displays
the effects of variations in the performance of our algorithm
concerning the value of τ . Notably, the performance of
FedCRC progressively declines as τ decreases. To maintain
a stable balance between global predictor updates and avoid
abrupt changes, we adopt τ = 0.99 for the aggregation
of the global predictor, following a self-supervised learning
approach [20].

TABLE III
CIFAR-10 TEST ACCURACY WITH DIFFERENT EXPONENTIAL MOVING

AVERAGE FACTORS

Weighting Factor β = 0.1 β = 0.5 β = 1 IID
τ = 0.99 64.61 70.75 72.77 76.41
τ = 0.9 64.31 70.61 72.76 76.20
τ = 0.5 60.25 69.79 72.52 75.77
τ = 0.2 60.31 69.27 72.68 75.82

V. CONCLUSIONS

This study presents FedCRC, a novel federated learning
algorithm that tackles the challenge of data heterogeneity
by decoupling the model into separate components. Our key
insight is that the predictor can serve as a representation
learning criterion for the extractor and is sensitive to varying
data distributions. Based on this observation, we utilize a
stable global predictor to train the representation extractor
and a local predictor for each client to achieve personalized
models. We also update the global predictor to ensure tight
integration of the different model parts. Our experiments on
multiple datasets with diverse levels of data heterogeneity
demonstrate that FedCRC outperforms the compared algo-
rithms. Future directions include improving our algorithms
to cope with clients with dynamic data distributions and
exploring the optimal division of the model.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage et al., “Communication-efficient
learning of deep networks from decentralized data,” in Proceedings of
Artificial Intelligence and Statistics (AISTATS), 2017, pp. 1273–1282.

[2] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proceedings of
Machine Learning and Systems (MLSys), vol. 2, pp. 429–450, 2020.

[3] J. Oh, S. Kim, and S.-Y. Yun, “FedBABU: Toward enhanced repre-
sentation for federated image classification,” in Proceedings of Inter-
national Conference on Learning Representations (ICLR), 2022.

[4] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“FedProto: Federated prototype learning across heterogeneous clients,”
in Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), vol. 36, no. 8, 2022, pp. 8432–8440.

[5] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, pp. 10 713–10 722.

[6] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in Neural Information Processing Sys-
tems, vol. 30, 2017.

[7] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

[8] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Pro-
ceedings of International Conference on Machine Learning (ICML).
PMLR, 2021, pp. 2089–2099.

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[10] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 7482–7491.

[11] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-tailed
recognition,” arXiv preprint arXiv:1910.09217, 2019.

[12] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in Proceedings of International Conference on Machine Learning
(ICML). PMLR, 2020, pp. 5132–5143.

[13] X.-C. Li and D.-C. Zhan, “FedRS: Federated learning with restricted
softmax for label distribution non-iid data,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 995–1005.

[14] L. Wang, S. Xu, X. Wang, and Q. Zhu, “Addressing class imbalance
in federated learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), vol. 35, no. 11, 2021, pp. 10 165–10 173.

[15] M. Luo, F. Chen, D. Hu et al., “No fear of heterogeneity: Classifier
calibration for federated learning with Non-IID data,” Advances in
Neural Information Processing Systems, vol. 34, pp. 5972–5984, 2021.

[16] T. Li, S. Hu, A. Beirami, and V. Smith, “Ditto: Fair and robust federated
learning through personalization,” in Proceedings of International
Conference on Machine Learning (ICML), 2021, pp. 6357–6368.

[17] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient frame-
work for clustered federated learning,” Advances in Neural Information
Processing Systems, vol. 33, pp. 19 586–19 597, 2020.

[18] F. Sattler, K.-R. Müller, and W. Samek, “Clustered federated learn-
ing: Model-agnostic distributed multitask optimization under privacy
constraints,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 32, no. 8, pp. 3710–3722, 2020.

[19] Y. Ruan and C. Joe-Wong, “FedSoft: Soft clustered federated learning
with proximal local updating,” in Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), vol. 36, no. 7, 2022, pp. 8124–8131.
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