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Abstract—Stochastic computing (SC) is a low-cost computation
paradigm that can replace conventional binary arithmetic to
provide a low hardware footprint with high scalability. However,
since the SC bitstream length grows with the precision of the
represented data, regardless of its lower power consumption,
the convolutional SC-based neural networks may not be efficient
in hardware area and energy. This work proposes a novel SC
accelerator, PSC-Conv, to implement the convolutional layer
using a new binary-interfaced stochastic computing architecture.
PSC-Conv exploits kernel-wise parallelism in CNNs, reducing
hardware footprint and energy consumption. Experimental re-
sults show that the proposed implementation excels among
several state-of-the-art SC-based implementations regarding area
and power efficiency. We also compared the implementations of
three modern CNNs, including LeNet-5, MobileNet, and ResNet-
50. Experimental results demonstrate that, on average, PSC-
Conv can achieve 5.02× speedup and 87.9% energy reduction
compared with the binary implementation.

Index Terms—Stochastic computing, Hardware accelerator,
Convolutional Neural Networks, Kernel-wise parallelism

I. INTRODUCTION

Recent research [1] on Neural Networks (NN) has achieved
unprecedented success in many machine learning applica-
tions, where high accuracy can be achieved at the cost of
a substantial computation, necessitating approaches beyond
traditional computing paradigms to improve operational ef-
ficiency. Stochastic Computing (SC) [2] introduces robustness
against randomness in number representation that can process
data bitwise with simple circuits. A stochastic bitstream of
length m represents numbers with a precision of 1/m. Several
SC-based hardware accelerators [3]–[6] have been developed
for convolutional neural networks (CNNs). However, existing
SC methods [7] require long streams that may negatively
impact the computation latency. Binary-Interfaced Stochastic
Computing (BISC) [8] was developed to build matrix-vector
multipliers that can significantly reduce time consumption
and energy overhead by using a special stochastic number
generator (SNG). However, CNN implementations using BISC
multipliers [9] may still incur extra area and energy overhead
when the number of convolutional kernels grows.
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This study proposes a novel SC-based architecture, PSC-
Conv, to implement the CNN inference. PSC-Conv is based
on the BISC structure, but it exploits the kernel-wise paral-
lelism in CNNs to provide a reduced hardware footprint and
energy consumption. We evaluated the performance of PSC-
Conv by implementing 256 multiply–accumulate (MAC) units.
Compared with the state-of-the-art SC-based approaches, PSC-
Conv can achieve an average of 29.4% and 40.2% reduction
in area and power. We also compared the implementations
of three modern CNNs, including LeNet-5, MobileNet, and
ResNet-50. Experimental results show that, on average, PSC-
Conv can achieve 5.02× speedup and 87.9% energy reduction
compared with the conventional binary counterpart.

II. RELATED WORK

Hardware accelerators for CNNs have become a research
hotspot [10] by developing new architectures on resource-
limited platforms with tight energy and hardware constraints.
SC is a low-cost alternative [2] to conventional binary arith-
metic for many computation-intensive tasks. SC-based CNN
implementations [3]–[6], [8], [9], [11]–[15] have attracted
much attention from the scientific community. Computation
with SC requires multiple cycles equal to the number of bits
in the stochastic bitstream. Since the length of the bitstream
grows with the precision of the data being represented, re-
gardless of its lower power consumption, the SC-based CNN
accelerator may consume more energy than a conventional
binary processing element. Since multiplication operations
are relatively slow on general-purpose hardware and require
significant resource investment, exploring efficient implemen-
tations toward architectural optimization is desired.

Ji et al. [11] proposed a fully parallel and scalable CNNs
architecture to achieve a 2× improvement in energy compared
with the conventional fixed-point binary implementation. Ho-
jabr et al. [12] proposed a differential MAC unit for SC-based
CNNs, and it offers 1.2× speedup and 2.7× energy saving
compared to a binary implementation. Sim et al. [9] proposed
a binary-interfaced stochastic computing matrix-vector multi-
plier (BISC-MVM) that can reduce the area-delay product and
energy consumption without significant degradation in neural
network accuracy. However, as the number of convolutional



kernels grows, these approaches may still incur additional area
and energy overhead.

III. PROPOSED KERNEL-WISE PARALLEL ARCHITECTURE

The BISC-MVM structure [9] was recently proposed to
improve the matrix multiplication in the computation speed
and energy efficiency. However, the current implementation
of BISC-MVM may still incur a significant area overhead
because a considerable amount of kernels are usually used in
modern CNNs. For instance, in a ResNet-50 implementation
[16], the convolutional kernels in a hidden layer can be
categorized into 2048 groups, resulting in a total of 1,048,576
kernel matrices. Therefore, our work proposes a novel paral-
lel architecture, PSC-Conv, to improve the area and energy
efficiency by exploiting kernel-wise parallelism in CNNs.

A. BISC Architecture

BISC is an energy-efficient architecture [13] to implement
multipliers that can significantly reduce the clock cycles taken
in the stochastic multiplication. A BISC module consists of
a stochastic number generator (SNG), counters, and an XOR
gate. Fig. 1 gives an example of BISC, where the inputs are
feature x and weight w, and the output is the product x · w.

The SNG can produce stochastic bitstreams by following
a deterministic bit shuffling pattern. Each SNG is equipped
with a finite state machine (FSM) and a multiplexer (MUX)
to implement stochastic multiplication. The MUX takes in x
as the input, and its select (SEL) port is driven by an FSM.
The FSM is designed so that each bit in x can be selected
as the output of the MUX in a pre-defined order. Therefore,
a stochastic representation of x is generated and XORed with
the sign of w. Meanwhile, the absolute value of w is set as the
value of the down counter (DC). The up-down counter (UDC)
takes the output of the XOR gate and keeps updating for w
clock cycles. The DC outputs a stop signal to the UDC after
w clock cycles and produces the binary result d = x · w.

We consider the example in Fig. 1 to see how it works. We
let w = 6/8 and x = −4/8. Hence the output of the MUX is
a binary bitstream γ = 0100 0100, which is then sent to the
XOR gate. Since sign(w) is 0, the output of the XOR gate
is a binary bitstream τ = XOR(γ, sign(w)) = 0100 0100.
The UDC takes in τ as a binary bitstream and outputs a 4-bit
binary number, d. If τ [j] = 1 and j is the time index, then
d increases by 1; otherwise, d decreases by 1. Meanwhile,
because the DC is initialized to |w| = 2′b0110, DC sends out
a stop signal to the UDC after 6 clock cycles. The result of
w · x is d = −2/8. It is worth noting that d deviated from
the actual result −3/8 due to the use of a limited number
of bits. However, since recent studies [17], [18] indicate that
convolutional neural networks can exhibit some robustness
towards quantization errors, the error can be negligible [9],
[12], [14] when the bitwidth increases.

BISC-MVM [9] is a parallelized BISC structure that im-
plements multiple BISC multipliers. This structure calculates
(w · X), where X = [x(0), x(1), · · · , x(t−1)] is a vector of t
elements. The BISC multipliers share part of the control logic,
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Fig. 1: Schematic of the BISC multiplier with an example.

including the FSM and the DC, as shown in Fig. 2. However,
this architecture may still incur area and energy overhead in
the presence of a large number of convolutional kernels.
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Fig. 2: Schematic of the BISC-MVM Structure.

Given a weight w̃ and assume |w̃| < |w|, we observe that
the product of w̃ · X can be produced as an intermediate
result when calculating w · X . This is because each element
of X is turned into a stochastic bitstream during the BISC
computation, and the product w̃ · X is produced after |w̃|
cycles. Hence, based on this fact, we propose the kernel-wise
optimization method, PSC-Conv, for the CNN implementation.

B. Proposed PSC-Conv Architecture
PSC-Conv is a parallel structure for implementing the

convolutional layer in CNNs. In the convolutional layer, the
feature extraction is performed by sliding a kernel matrix
K(i) ∈ RP×Q (i is the index of the kernel, P and Q denotes
the number of rows and columns of the kernel matrix) over the
feature map X ∈ RR×C (R and C denotes the number of rows
and columns of the feature map). The convolution operation
[19] can be considered as multiple MAC operations, and it
can be described by

Y (i)
r,c =

P−1∑
p=0

Q−1∑
q=0

K(i)
p,q·X

(
r + p−

⌊
P

2

⌋
, c+ q −

⌊
Q

2

⌋)
, (1)

where Y is the resulting matrix, (r, c) is the index of the
resulting matrix elements, and (p, q) is the index of the weights
in each kernel. The kernel matrix (usually smaller in size
than the input feature map) is first multiplied with a P × Q
sized block of X , and the results are accumulated by sliding
across the X matrix. The convolution operation in (1) can be
expanded as a summation of multiple sub-equations, and each
sub-equation has the following expression:

Ŷr,c =
[
K(0)

p,q ,K
(1)
p,q , · · · ,K(λ−1)

p,q

]
· x, (2)



where λ denotes the number of kernel groups in a convolu-
tional layer, and x is a scalar element.

Hence, our PSC-Conv design only requires one BISC mul-
tiplier as shown in Fig. 3 to implement (2). PSC-Conv takes
in maxi{K(i)

p,q} and x as the inputs, and the result of each
element in Ŷr,c can be produced as the intermediate results.
It’s noted that PSC-Conv requires some extra control logic to
coordinate the correct timing for collecting the results of (2).
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Fig. 3: Schematic of a single cell in PSC-Conv architecture.

In Fig. 3, the converter handles the signed arithmetic. It passes
the result d directly to its output if the sign of K

(i)
p,q is

positive and outputs the two’s complement of d if otherwise.
Therefore, compared with the BISC-MVM structure, PSC-
Conv can significantly reduce the area overhead and improve
energy performance when implementing the vector-scalar mul-
tiplication in (2).

We can further improve the PSC-Conv implementation by
considering the multiplication of two vectors given by[

K(0)
p,q ,K

(1)
p,q , · · · ,K(λ−1)

p,q

]
·X, (3)

where X = [X(p, q), · · · , X(p+(R−P+1), q+(C−Q+1))]
(p ∈ [0, P−1] and q ∈ [0, Q−1]). We propose a parallel PSC-
Conv structure, as shown in Fig. 4, that consists of size(X)
BISC multipliers and each multiplier is designated for the
computation in the form of (2) with the corresponding element
in X . The FSM and DC in this parallel PSC-Conv structure
is shared among multipliers in PSC-Conv.
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Fig. 4: Schematic of the PSC-Conv architecture.

Consider the example in Fig. 5 that computes the prod-
uct for K · X , where K = [K

(0)
0,0 ,K

(1)
0,0 ,K

(2)
0,0 ] and X =

[X(0, 0), X(0, 1), X(1, 0), X(1, 1)]. The overall PSC-Conv
implementation only requires four BISC multipliers with some
extra logic for the controller. In contrast, the BISC-MVM
implementation requires twelve BISC multipliers, and the
control logic is about the same size. Our PSC-Conv archi-
tecture can significantly reduce the overall area overhead,

especially when the number of kernels is sizable. Consider
a convolutional layer consisting of m kernel groups, and
each group has n kernel matrices of size P × Q. If the
feature map is a R × C matrix, our PSC-Conv architecture
requires a minimum of (R − P + 1) × (C − Q + 1) BISC
multipliers for implementing a fully-parallel structure for such
a convolutional layer. For example, consider a hidden layers
with 2048 groups of convolutional kernels and each consists
of 512 1×1 kernel matrices. If the input feature map is a 3×3
matrix, our PSC-Conv can fully parallelize the convolutional
operation using 9 BISC multipliers.
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Fig. 5: Diagram of a convolutional layer with three kernels.

IV. EXPERIMENTAL RESULTS

We evaluate the PSC-Conv architecture by implement-
ing three modern CNNs: LeNet-5 [20], MobileNet [21],
and ResNet-50 [16], which are evaluated using the MNIST,
CIFAR-10, and ImageNet datasets. The proposed PSC-Conv
is also compared to five state-of-the-art SC implementations
regarding the hardware cost and power performance. The Syn-
opsys Design Compiler G-2012.06-SP2 is used to synthesize
the implementations with a 45nm gate library.

A. Network Accuracy

The accuracy of the LeNet-5, MobileNet, and ResNet-50
is evaluated by varying the bitwidth of the multiplier’s inputs
and outputs. Four implementations are compared against our
proposed PSC-Conv as shown in Fig. 6. The floating-point
design performs the best among all implementations, while
the conventional SC method has the worst accuracy. The PSC-
Conv method is on par with the BISC-MVM and the fixed-
point binary when the bitwidth is 12 bits.

B. Hardware Cost and Performance Evaluation

We evaluate the hardware cost of 256 MAC implementa-
tions of various SC-based works, including DPS [14], Skip-
pyNN [12], BISC-MVM [9], PHSB-NN [15], and FPSC [6].
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Fig. 6: Inference accuracy on (a) LeNet-5, (b) MobileNet and (c) ResNet-50.

TABLE I: Comparison With Related SC-Based Works

Work DPS [14] SkippyNN [12] BISC-MVM [9] PHSB-NN [15] FPSC [6] Proposed PSC-Conv Binary
DataSet ImageNet ImageNet CIFAR-10 MNIST CIFAR-10 ImageNet ImageNet

Accuracy/ % 82.47 (top-5) 90 (top-5) 82 (top-1) 98.9 (top-1) 81 (top-1) 91.0 (top-5) 92.3 (top-5)
Scope 256 MAC 256 MAC 256 MAC 256 MAC 256 MAC 256 MAC 256 MAC
Tech. 45nm 45nm 45nm 14nm 40nm 45nm 45nm

Freq.(Mhz) 1000 1064 1000 400 \ 1000 1000
Area(mm2) 0.0971 0.0844 0.0803 0.0826 0.133 0.0655 0.1736
Power(mW) \ 16.452 16.177 32.873 25.52 12.45 106.69

TABLE II: Performance Comparisons of PSC-Conv, BISC-MVM and the binary implementation

CNN LeNet-5 (12-bit) MobileNet (12-bit) ResNet-50 (12-bit)
Compared with Binary BISC-MVM Binary BISC-MVM Binary BISC-MVM

Speedup 4.38× 1.00× 4.90× 1.00× 5.80× 1.00×
Energy Reducion 85.6% 15.4% 90.1% 18.9% 88.2% 16.2%

The results are summarized in TABLE I. Our proposed PSC-
Conv can attain a top-5 accuracy of 91.0%, which is on par
with that of its binary counterpart. The PSC-Conv has the best
hardware area and power performance among all implementa-
tions. Compared with five state-of-the-art SC implementations,
PSC-Conv can, on average, reduce the hardware area by 29.4%
and improve the power performance by 40.2%. Although
PHSB-NN and FPSC utilize smaller feature sizes, their results
are not as favorable as those achieved by PSC-Conv using the
45nm feature size. Compared with the binary implementation,
PSC-Conv reduces the hardware area and power by 62.3%
and 88.3%, respectively. The parallel design in our PSC-
Conv effectively leverages kernel-wise parallelism, leading to
a significant improvement in the MAC implementation.

C. Implementation Efficiency of PSC-Conv

To better evaluate the efficiency, we implement the entire
neural network hardware for the LeNet-5, MobileNet, and
ResNet-50. TABLE II summarizes PSC-Conv’s speedup and
reduction in energy compared with the binary and the BISC-
MVM design. Speedup measures the average improvement
in the inference time. The energy reduction measures the
decrease in energy consumption, which is the product of
the inference time and the power. We observe that, for the
implementations of LeNet-5, PSC-Conv can achieve 4.38×
speedup and 85.6% energy reduction compared with the
binary implementation. Similar results can be concluded for

the PSC-Conv implementation of MobileNet and ResNet-50.
Compared to a BISC-MVM implementation, the PSC-Conv
implementations of LeNet-5, MobileNet, and ResNet-50 can
achieve an average 16.8% reduction in energy consumption.
However, due to the use of BISC as the core structure in
our PSC-Conv, it does not exhibit substantial improvement in
speed compared to BISC-MVM. In summary, our PSC-Conv
excels among all implementations for the LeNet-5, MobileNet,
and ResNet-50 regarding energy performance.

V. CONCLUSION

This work proposes a novel SC accelerator for CNNs, called
PSC-Conv. PSC-Conv exploits the kernel-wise parallelism in
each convolutional layer. We demonstrate that our design can
effectively reduce the hardware area and energy consumption.
Experimental results show that PSC-Conv outperforms the
binary design and five state-of-the-art SC-based implementa-
tions in terms of area and power performance. The proposed
PSC-Conv can reduce the area and power by an average of
29.4% and 40.2% for a 256 MAC array. Compared with the
binary implementation, the proposed PSC-Conv can reduce
62.3% area cost and 88.3% power. We also evaluate the
hardware implementations for the LeNet-5, MobileNet, and
ResNet-50. Experimental results demonstrate that the proposed
implementation is an energy-efficient design that can provide
5.02× speedup and 87.9% energy reduction, on average,
compared with the conventional binary implementation.
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