
Energy-Efficient Stochastic Computing for
Convolutional Neural Networks by Using

Kernel-wise Parallelism
Zaipeng Xie∗, Chenyu Yuan†, Likun Li†, and Jiahao Wu†

∗Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, China
†College of Computer and Information, Hohai University, Nanjing, China

Email: {zaipengxie, chenyu yuan, lilikun, jiahaowu}@hhu.edu.cn

Abstract—Stochastic computing (SC) is a low-cost computation
paradigm that can replace conventional binary arithmetic to
provide a low hardware footprint with high scalability. However,
since the SC bitstream length grows with the precision of the
represented data, regardless of its lower power consumption,
the convolutional SC-based neural networks may not be efficient
in hardware area and energy. This work proposes a novel SC
accelerator, PSC-Conv, to implement the convolutional layer
using a new binary-interfaced stochastic computing architecture.
PSC-Conv exploits kernel-wise parallelism in CNNs, reducing
hardware footprint and energy consumption. Experimental re-
sults show that the proposed implementation excels among
several state-of-the-art SC-based implementations regarding area
and power efficiency. We also compared the implementations of
three modern CNNs, including LeNet-5, MobileNet, and ResNet-
50. Experimental results demonstrate that, on average, PSC-
Conv can achieve 5.02× speedup and 87.9% energy reduction
compared with the binary implementation.

Index Terms—Stochastic computing, Hardware accelerator,
Convolutional Neural Networks, Kernel-wise parallelism

I. INTRODUCTION

Recent research [1] on Neural Networks (NN) has achieved
unprecedented success in many machine learning applica-
tions, where high accuracy can be achieved at the cost of
a substantial computation, necessitating approaches beyond
traditional computing paradigms to improve operational ef-
ficiency. Stochastic Computing (SC) [2] introduces robustness
against randomness in number representation that can process
data bitwise with simple circuits. A stochastic bitstream of
length m represents numbers with a precision of 1/m. Several
SC-based hardware accelerators [3]–[6] have been developed
for convolutional neural networks (CNNs). However, existing
SC methods [7] require long streams that may negatively
impact the computation latency. Binary-Interfaced Stochastic
Computing (BISC) [8] was developed to build matrix-vector
multipliers that can significantly reduce time consumption
and energy overhead by using a special stochastic number
generator (SNG). However, CNN implementations using BISC
multipliers [9] may still incur extra area and energy overhead
when the number of convolutional kernels grows.

The corresponding author is Zaipeng Xie. This work is supported by The
Belt and Road Special Foundation of the State Key Laboratory of Hydrology-
Water Resources and Hydraulic Engineering under Grant No. 2021490811.

This study proposes a novel SC-based architecture, PSC-
Conv, to implement the CNN inference. PSC-Conv is based
on the BISC structure, but it exploits the kernel-wise paral-
lelism in CNNs to provide a reduced hardware footprint and
energy consumption. We evaluated the performance of PSC-
Conv by implementing 256 multiply–accumulate (MAC) units.
Compared with the state-of-the-art SC-based approaches, PSC-
Conv can achieve an average of 29.4% and 40.2% reduction
in area and power. We also compared the implementations
of three modern CNNs, including LeNet-5, MobileNet, and
ResNet-50. Experimental results show that, on average, PSC-
Conv can achieve 5.02× speedup and 87.9% energy reduction
compared with the conventional binary counterpart.

II. RELATED WORK

Hardware accelerators for CNNs have become a research
hotspot [10] by developing new architectures on resource-
limited platforms with tight energy and hardware constraints.
SC is a low-cost alternative [2] to conventional binary arith-
metic for many computation-intensive tasks. SC-based CNN
implementations [3]–[6], [8], [9], [11]–[15] have attracted
much attention from the scientific community. Computation
with SC requires multiple cycles equal to the number of bits
in the stochastic bitstream. Since the length of the bitstream
grows with the precision of the data being represented, re-
gardless of its lower power consumption, the SC-based CNN
accelerator may consume more energy than a conventional
binary processing element. Since multiplication operations
are relatively slow on general-purpose hardware and require
significant resource investment, exploring efficient implemen-
tations toward architectural optimization is desired.

Ji et al. [11] proposed a fully parallel and scalable CNNs
architecture to achieve a 2× improvement in energy compared
with the conventional fixed-point binary implementation. Ho-
jabr et al. [12] proposed a differential MAC unit for SC-based
CNNs, and it offers 1.2× speedup and 2.7× energy saving
compared to a binary implementation. Sim et al. [9] proposed
a binary-interfaced stochastic computing matrix-vector multi-
plier (BISC-MVM) that can reduce the area-delay product and
energy consumption without significant degradation in neural
network accuracy. However, as the number of convolutional

kernels grows, these approaches may still incur additional area
and energy overhead.

III. PROPOSED KERNEL-WISE PARALLEL ARCHITECTURE

The BISC-MVM structure [9] was recently proposed to
improve the matrix multiplication in the computation speed
and energy efficiency. However, the current implementation
of BISC-MVM may still incur a significant area overhead
because a considerable amount of kernels are usually used in
modern CNNs. For instance, in a ResNet-50 implementation
[16], the convolutional kernels in a hidden layer can be
categorized into 2048 groups, resulting in a total of 1,048,576
kernel matrices. Therefore, our work proposes a novel paral-
lel architecture, PSC-Conv, to improve the area and energy
efficiency by exploiting kernel-wise parallelism in CNNs.

A. BISC Architecture

BISC is an energy-efficient architecture [13] to implement
multipliers that can significantly reduce the clock cycles taken
in the stochastic multiplication. A BISC module consists of
a stochastic number generator (SNG), counters, and an XOR
gate. Fig. 1 gives an example of BISC, where the inputs are
feature x and weight w, and the output is the product x · w.

The SNG can produce stochastic bitstreams by following
a deterministic bit shuffling pattern. Each SNG is equipped
with a finite state machine (FSM) and a multiplexer (MUX)
to implement stochastic multiplication. The MUX takes in x
as the input, and its select (SEL) port is driven by an FSM.
The FSM is designed so that each bit in x can be selected
as the output of the MUX in a pre-defined order. Therefore,
a stochastic representation of x is generated and XORed with
the sign of w. Meanwhile, the absolute value of w is set as the
value of the down counter (DC). The up-down counter (UDC)
takes the output of the XOR gate and keeps updating for w
clock cycles. The DC outputs a stop signal to the UDC after
w clock cycles and produces the binary result d = x · w.

We consider the example in Fig. 1 to see how it works. We
let w = 6/8 and x = −4/8. Hence the output of the MUX is
a binary bitstream γ = 0100 0100, which is then sent to the
XOR gate. Since sign(w) is 0, the output of the XOR gate
is a binary bitstream τ = XOR(γ, sign(w)) = 0100 0100.
The UDC takes in τ as a binary bitstream and outputs a 4-bit
binary number, d. If τ [j] = 1 and j is the time index, then
d increases by 1; otherwise, d decreases by 1. Meanwhile,
because the DC is initialized to |w| = 2′b0110, DC sends out
a stop signal to the UDC after 6 clock cycles. The result of
w · x is d = −2/8. It is worth noting that d deviated from
the actual result −3/8 due to the use of a limited number
of bits. However, since recent studies [17], [18] indicate that
convolutional neural networks can exhibit some robustness
towards quantization errors, the error can be negligible [9],
[12], [14] when the bitwidth increases.

BISC-MVM [9] is a parallelized BISC structure that im-
plements multiple BISC multipliers. This structure calculates
(w · X), where X = [x(0), x(1), · · · , x(t−1)] is a vector of t
elements. The BISC multipliers share part of the control logic,

x2 x1 x0

 FSM MUXSEL

4-bit

x3

1 1 0 0

sign(w)

stops UDC
after 6 cycles

DC

UDC

XOR

d=1110=

SNG 1100=
8
4

= -x

γ=0010_0010

|w|=6

w = =0110

τ=00100010

valid bit stream

time direction

8
6

8
2

-

Fig. 1: Schematic of the BISC multiplier with an example.

including the FSM and the DC, as shown in Fig. 2. However,
this architecture may still incur area and energy overhead in
the presence of a large number of convolutional kernels.

 FSM

x(0)

w

xn-1 x1 x0

MUX1

x1 x0

MUXt-1

x1 x0

DC UDC UDC UDC

MUX0

Shared among
Multipliers

sign(w)

 xn-1 xn-1
x(1) x(t-1)

(0) (0) (0) (1) (1) (1) (t-1) (t-1) (t-1)

 BISC multipliers

d (0) d (1) d (t-1)

SEL SEL

STOP STOP STOP

SEL

Fig. 2: Schematic of the BISC-MVM Structure.

Given a weight w̃ and assume |w̃| < |w|, we observe that
the product of w̃ · X can be produced as an intermediate
result when calculating w · X . This is because each element
of X is turned into a stochastic bitstream during the BISC
computation, and the product w̃ · X is produced after |w̃|
cycles. Hence, based on this fact, we propose the kernel-wise
optimization method, PSC-Conv, for the CNN implementation.

B. Proposed PSC-Conv Architecture
PSC-Conv is a parallel structure for implementing the

convolutional layer in CNNs. In the convolutional layer, the
feature extraction is performed by sliding a kernel matrix
K(i) ∈ RP×Q (i is the index of the kernel, P and Q denotes
the number of rows and columns of the kernel matrix) over the
feature map X ∈ RR×C (R and C denotes the number of rows
and columns of the feature map). The convolution operation
[19] can be considered as multiple MAC operations, and it
can be described by

Y (i)
r,c =

P−1∑
p=0

Q−1∑
q=0

K(i)
p,q·X

(
r + p−

⌊
P

2

⌋
, c+ q −

⌊
Q

2

⌋)
, (1)

where Y is the resulting matrix, (r, c) is the index of the
resulting matrix elements, and (p, q) is the index of the weights
in each kernel. The kernel matrix (usually smaller in size
than the input feature map) is first multiplied with a P × Q
sized block of X , and the results are accumulated by sliding
across the X matrix. The convolution operation in (1) can be
expanded as a summation of multiple sub-equations, and each
sub-equation has the following expression:

Ŷr,c =
[
K(0)

p,q ,K
(1)
p,q , · · · ,K(λ−1)

p,q

]
· x, (2)

where λ denotes the number of kernel groups in a convolu-
tional layer, and x is a scalar element.

Hence, our PSC-Conv design only requires one BISC mul-
tiplier as shown in Fig. 3 to implement (2). PSC-Conv takes
in maxi{K(i)

p,q} and x as the inputs, and the result of each
element in Ŷr,c can be produced as the intermediate results.
It’s noted that PSC-Conv requires some extra control logic to
coordinate the correct timing for collecting the results of (2).

w00

w10

wg0

M
U

X

bit0

bit1

bit2

bit n-1

M
U

X

bit0

bit1

bit2

bit n-1

M

U
X

bit0

bit1

bit2

bit n-1

CONTROLLER

COUNTER

COUNTER

COUNTER

w_sign[g-1:0]

SELECTOR
FSM

control[g-1:0]

Σ

control

w01

w11

wg1

w0k

w1k

wgk

SIGN
CONVERTOR

SIGN
CONVERTOR

SIGN
CONVERTOR

0x

1x

gx

Input Buffer

MUX MUX MUX

Controller

Output Buffer

Σ

FSM

control_FSM

w_sign[s-1:0]

Kernel Buffer

control[s-1:0]

read_addr

Modified
BISC-MVM)0(

00k)1(
00k)(

00
sk

)0(
01k)1(

01k)(
01

sk

)0(
pqk)1(

pqk)(s
pqk

s

Converter Converter Converter

Input Buffer

MUX MUX MUX

Controller

Output Buffer

Σ

FSM

control_FSM

w_sign[s-1:0]

Kernel Buffer

control[s-1:0]

read_addr

Modified
BISC-MVM)0(

00k)1(
00k)(

00
sk

)0(
01k)1(

01k)(
01

sk

)0(
pqk)1(

pqk)(s
pqk

Converter ConverterConverter

s

UDC

MUX

DC Converter
()

,
i

p qK x

SEL

x

FSM

d}{max)(
,
i
qpi K

)(
,
i
qpKsign()

UDC

MUX

DC

Converter

SELFSM

 ,X p q

UDC

MUX

Converter

 1,X p q

UDC

MUX

Converter

    1 , 1X p R P q C Q     

STOP

}{max)(
,
i
qpi K

)(
,
i
qpKsign()

)(
,
i
qpK),(qpX

)(
,
i
qpK),1+(qpX)(

,
i
qpK))-()-((11 Q+C,q+P+Rp+X

Shared among
Multipliers

STOP

Fig. 3: Schematic of a single cell in PSC-Conv architecture.

In Fig. 3, the converter handles the signed arithmetic. It passes
the result d directly to its output if the sign of K

(i)
p,q is

positive and outputs the two’s complement of d if otherwise.
Therefore, compared with the BISC-MVM structure, PSC-
Conv can significantly reduce the area overhead and improve
energy performance when implementing the vector-scalar mul-
tiplication in (2).

We can further improve the PSC-Conv implementation by
considering the multiplication of two vectors given by[

K(0)
p,q ,K

(1)
p,q , · · · ,K(λ−1)

p,q

]
·X, (3)

where X = [X(p, q), · · · , X(p+(R−P+1), q+(C−Q+1))]
(p ∈ [0, P−1] and q ∈ [0, Q−1]). We propose a parallel PSC-
Conv structure, as shown in Fig. 4, that consists of size(X)
BISC multipliers and each multiplier is designated for the
computation in the form of (2) with the corresponding element
in X . The FSM and DC in this parallel PSC-Conv structure
is shared among multipliers in PSC-Conv.

w00

w10

wg0

M
U

X

bit0

bit1

bit2

bit n-1

M
U

X

bit0

bit1

bit2

bit n-1

M

U
X

bit0

bit1

bit2

bit n-1

CONTROLLER

COUNTER

COUNTER

COUNTER

w_sign[g-1:0]

SELECTOR
FSM

control[g-1:0]

Σ

control

w01

w11

wg1

w0k

w1k

wgk

SIGN
CONVERTOR

SIGN
CONVERTOR

SIGN
CONVERTOR

0x

1x

gx

Input Buffer

MUX MUX MUX

Controller

Output Buffer

Σ

FSM

control_FSM

w_sign[s-1:0]

Kernel Buffer

control[s-1:0]

read_addr

Modified
BISC-MVM)0(

00k)1(
00k)(

00
sk

)0(
01k)1(

01k)(
01

sk

)0(
pqk)1(

pqk)(s
pqk

s

Converter Converter Converter

Input Buffer

MUX MUX MUX

Controller

Output Buffer

Σ

FSM

control_FSM

w_sign[s-1:0]

Kernel Buffer

control[s-1:0]

read_addr

Modified
BISC-MVM)0(

00k)1(
00k)(

00
sk

)0(
01k)1(

01k)(
01

sk

)0(
pqk)1(

pqk)(s
pqk

Converter ConverterConverter

s

UDC

MUX

DC Converter
()

,
i

p qK x

SEL

x

FSM

d}{max)(
,
i
qpi K

)(
,
i
qpKsign()

UDC

MUX

DC

Converter

SELFSM

 ,X p q

UDC

MUX

Converter

 1,X p q

UDC

MUX

Converter

    1 , 1X p R P q C Q     

STOP

}{max)(
,
i
qpi K

)(
,
i
qpKsign()

)(
,
i
qpK),(qpX

)(
,
i
qpK),1+(qpX)(

,
i
qpK))-()-((11 Q+C,q+P+Rp+X

Shared among
Multipliers

STOP

Fig. 4: Schematic of the PSC-Conv architecture.

Consider the example in Fig. 5 that computes the prod-
uct for K · X , where K = [K

(0)
0,0 ,K

(1)
0,0 ,K

(2)
0,0] and X =

[X(0, 0), X(0, 1), X(1, 0), X(1, 1)]. The overall PSC-Conv
implementation only requires four BISC multipliers with some
extra logic for the controller. In contrast, the BISC-MVM
implementation requires twelve BISC multipliers, and the
control logic is about the same size. Our PSC-Conv archi-
tecture can significantly reduce the overall area overhead,

especially when the number of kernels is sizable. Consider
a convolutional layer consisting of m kernel groups, and
each group has n kernel matrices of size P × Q. If the
feature map is a R × C matrix, our PSC-Conv architecture
requires a minimum of (R − P + 1) × (C − Q + 1) BISC
multipliers for implementing a fully-parallel structure for such
a convolutional layer. For example, consider a hidden layers
with 2048 groups of convolutional kernels and each consists
of 512 1×1 kernel matrices. If the input feature map is a 3×3
matrix, our PSC-Conv can fully parallelize the convolutional
operation using 9 BISC multipliers.

x3

M
U
X

SELECTOR FSM

COUNTER

x7

M
U
X COUNTER

x6

M
U
X COUNTER

COUNTERw*0

Σ

x4

M
U
X COUNTER

x2

M
U
X COUNTER

w*1

x9

x0

x1

x5

x8

x1 x3 x4

x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

w12 w13

w14 w15 w16

w17 w18 w19

w22 w23

w24 w25 w26

w27 w28 w29

w32 w33

w34 w35 w36

w37 w38 w39

w42 w43

w44 w45 w46

w47 w48 w49

w11

x2

x5 x6

w21

w31 w41

M
U

X
M

U
X

M
U

X
M

U
X

x1

x2

x5

x6

x2x3

x3x4

x6x7

x7x8

DOWN
COUNTER

w11w12w13

SELECTOR
FSM

UP/DOWN
COUNTER

UP/DOWN
COUNTER

UP/DOWN
COUNTER

UP/DOWN
COUNTER

Σ

DOWN
COUNTER

w21w22w23

DOWN
COUNTER

w31w32w33

DOWN
COUNTER

w41w42w43

x0 x2x1 x3

x6 x7

x8

x4

x9 x10 x11

x12 x13 x14 x15

w11 w12

w13 w14 w15

w16 w17 w18

w01 w02

w03 w04 w05

w06 w07 w08

w21 w22

w23 w24 w25

w26 w27 w28

x5
w10

w00

w20

M
U
X

M
U
X

M
U
X

COUNTER

Σ

M
U
X COUNTER

COUNTER

COUNTER

COUNTER

COUNTER

COUNTER

x0

x1

x4

x5

x1

x2

x5

x6

x2

x3

x6

x7

w00

w10

w20

w01

w11

w21

w02

w12

w22

SELECTOR
FSM

COUNTER

X(0,0) X(0,2)X(0,1) X(0,3)

X(1,2) X(1,3)

X(2,0)

X(1,0)

X(2,1) X(2,2) X(2,3)

X(3,0) X(3,1) X(3,2) X(3,3)

X(1,1)

X

K0

K1

K2

)0(
00k

)0(
01k

)0(
02k

)0(
10k)0(

11k
)0(

12k

)0(
20k)0(

21k
)0(

22k

)1(
00k

)1(
01k

)1(
02k

)1(
10k)1(

11k
)1(

12k

)1(
20k)1(

21k
)1(

22k

)2(
00k

)2(
01k

)2(
02k

)2(
10k)2(

11k
)2(

12k

)2(
20k)2(

21k
)2(

22k

)0(
00y

)0(
01y

)0(
10y)0(

11y

)1(
00y

)1(
01y

)1(
10y)1(

11y

)2(
00y

)2(
01y

)2(
10y)2(

11y

X(0,0) X(0,2)X(0,1) X(0,3)

X(1,2) X(1,3)

X(2,0)

X(1,0)

X(2,1) X(2,2) X(2,3)

X(3,0) X(3,1) X(3,2) X(3,3)

X(1,1)

X

K (0)

K (1)

K (2)

)0(
0,0K

)0(
1,0K

)0(
2,0K

)0(
1,1K)0(

2,1K

)0(
0,2K

)0(
1,2K

)0(
2,2K

)1(
0,0K

)1(
1,0K

)1(
2,0K

)1(
0,1K

)1(
1,1K

)1(
2,1K

)1(
0,2K

)1(
1,2K

)1(
2,2K

)2(
0,0K

)2(
1,0K

)2(
2,0K

)2(
0,1K

)2(
1,1K

)2(
2,1K

)2(
0,2K

)2(
1,2K

)2(
2,2K

)0(
0,0Y

)0(
1,0Y

)0(
0,1Y

)0(
1,1Y

)1(
0,0Y

)1(
1,0Y

)1(
0,1Y

)1(
1,1Y

)2(
0,0Y

)2(
1,0Y

)2(
0,1Y

)2(
1,1Y

Y (0)

Y (1)

Y (2)

)0(
0,1K

x(0,0) x(0,1) x(0,c-1)

x(1,c-1)x(1,0)

x(r-1,0) x(r-1,1) x(r-1,c-1)

x(1,1)

X

W(0)

W(1)

W(t-1)

)0,0(
0w

)0(
1,1K)0(

2,1K

)0(
0,2K)0(

1,2K)0(
2,2K

)1(
0,0K)1(

1,0K)1(
2,0K

)1(
0,1K)1(

1,1K)1(
2,1K

)1(
0,2K)1(

1,2K)1(
2,2K

)2(
0,0K)2(

1,0K)2(
2,0K

)2(
0,1K)2(

1,1K)2(
2,1K

)2(
0,2K)2(

1,2K)2(
2,2K

)0(
0,0Y

)0(
1,0Y

)0(
0,1Y

)0(
1,1Y

)1(
0,0Y

)1(
1,0Y

)1(
0,1Y

)1(
1,1Y

)2(
0,0Y

)2(
1,0Y

)2(
0,1Y

)2(
1,1Y

Y(0)

Y(1)

Y(2)

)0(
1,0K

R

C

)1,0(
0

-qw

P

x(0,0) x(0,1) x(0,c-1)

x(1,c-1)x(1,0)

x(r-1,0) x(r-1,1) x(r-1,c-1)

x(1,1)

Dx

Dx/2

Dx/2

×Dw

×Dw

2Dw

Fig. 5: Diagram of a convolutional layer with three kernels.

IV. EXPERIMENTAL RESULTS

We evaluate the PSC-Conv architecture by implement-
ing three modern CNNs: LeNet-5 [20], MobileNet [21],
and ResNet-50 [16], which are evaluated using the MNIST,
CIFAR-10, and ImageNet datasets. The proposed PSC-Conv
is also compared to five state-of-the-art SC implementations
regarding the hardware cost and power performance. The Syn-
opsys Design Compiler G-2012.06-SP2 is used to synthesize
the implementations with a 45nm gate library.

A. Network Accuracy

The accuracy of the LeNet-5, MobileNet, and ResNet-50
is evaluated by varying the bitwidth of the multiplier’s inputs
and outputs. Four implementations are compared against our
proposed PSC-Conv as shown in Fig. 6. The floating-point
design performs the best among all implementations, while
the conventional SC method has the worst accuracy. The PSC-
Conv method is on par with the BISC-MVM and the fixed-
point binary when the bitwidth is 12 bits.

B. Hardware Cost and Performance Evaluation

We evaluate the hardware cost of 256 MAC implementa-
tions of various SC-based works, including DPS [14], Skip-
pyNN [12], BISC-MVM [9], PHSB-NN [15], and FPSC [6].

8 9 10 11 12
Bitwidth/bit

(a)

0

20

40

60

80

100

A
cc

/%

8 9 10 11 12
Bitwidth/bit

(b)

0

20

40

60

80

100

A
cc

/%

8 9 10 11 12
Bitwidth/bit

(c)

0

20

40

60

80

100

A
cc

/%

Floating-Point Fixed-Point Conventional SC BISC-MVM PSC-Conv

Fig. 6: Inference accuracy on (a) LeNet-5, (b) MobileNet and (c) ResNet-50.

TABLE I: Comparison With Related SC-Based Works

Work DPS [14] SkippyNN [12] BISC-MVM [9] PHSB-NN [15] FPSC [6] Proposed PSC-Conv Binary
DataSet ImageNet ImageNet CIFAR-10 MNIST CIFAR-10 ImageNet ImageNet

Accuracy/ % 82.47 (top-5) 90 (top-5) 82 (top-1) 98.9 (top-1) 81 (top-1) 91.0 (top-5) 92.3 (top-5)
Scope 256 MAC 256 MAC 256 MAC 256 MAC 256 MAC 256 MAC 256 MAC
Tech. 45nm 45nm 45nm 14nm 40nm 45nm 45nm

Freq.(Mhz) 1000 1064 1000 400 \ 1000 1000
Area(mm2) 0.0971 0.0844 0.0803 0.0826 0.133 0.0655 0.1736
Power(mW) \ 16.452 16.177 32.873 25.52 12.45 106.69

TABLE II: Performance Comparisons of PSC-Conv, BISC-MVM and the binary implementation

CNN LeNet-5 (12-bit) MobileNet (12-bit) ResNet-50 (12-bit)
Compared with Binary BISC-MVM Binary BISC-MVM Binary BISC-MVM

Speedup 4.38× 1.00× 4.90× 1.00× 5.80× 1.00×
Energy Reducion 85.6% 15.4% 90.1% 18.9% 88.2% 16.2%

The results are summarized in TABLE I. Our proposed PSC-
Conv can attain a top-5 accuracy of 91.0%, which is on par
with that of its binary counterpart. The PSC-Conv has the best
hardware area and power performance among all implementa-
tions. Compared with five state-of-the-art SC implementations,
PSC-Conv can, on average, reduce the hardware area by 29.4%
and improve the power performance by 40.2%. Although
PHSB-NN and FPSC utilize smaller feature sizes, their results
are not as favorable as those achieved by PSC-Conv using the
45nm feature size. Compared with the binary implementation,
PSC-Conv reduces the hardware area and power by 62.3%
and 88.3%, respectively. The parallel design in our PSC-
Conv effectively leverages kernel-wise parallelism, leading to
a significant improvement in the MAC implementation.

C. Implementation Efficiency of PSC-Conv

To better evaluate the efficiency, we implement the entire
neural network hardware for the LeNet-5, MobileNet, and
ResNet-50. TABLE II summarizes PSC-Conv’s speedup and
reduction in energy compared with the binary and the BISC-
MVM design. Speedup measures the average improvement
in the inference time. The energy reduction measures the
decrease in energy consumption, which is the product of
the inference time and the power. We observe that, for the
implementations of LeNet-5, PSC-Conv can achieve 4.38×
speedup and 85.6% energy reduction compared with the
binary implementation. Similar results can be concluded for

the PSC-Conv implementation of MobileNet and ResNet-50.
Compared to a BISC-MVM implementation, the PSC-Conv
implementations of LeNet-5, MobileNet, and ResNet-50 can
achieve an average 16.8% reduction in energy consumption.
However, due to the use of BISC as the core structure in
our PSC-Conv, it does not exhibit substantial improvement in
speed compared to BISC-MVM. In summary, our PSC-Conv
excels among all implementations for the LeNet-5, MobileNet,
and ResNet-50 regarding energy performance.

V. CONCLUSION

This work proposes a novel SC accelerator for CNNs, called
PSC-Conv. PSC-Conv exploits the kernel-wise parallelism in
each convolutional layer. We demonstrate that our design can
effectively reduce the hardware area and energy consumption.
Experimental results show that PSC-Conv outperforms the
binary design and five state-of-the-art SC-based implementa-
tions in terms of area and power performance. The proposed
PSC-Conv can reduce the area and power by an average of
29.4% and 40.2% for a 256 MAC array. Compared with the
binary implementation, the proposed PSC-Conv can reduce
62.3% area cost and 88.3% power. We also evaluate the
hardware implementations for the LeNet-5, MobileNet, and
ResNet-50. Experimental results demonstrate that the proposed
implementation is an energy-efficient design that can provide
5.02× speedup and 87.9% energy reduction, on average,
compared with the conventional binary implementation.

REFERENCES

[1] X. Bai, X. Wang, X. Liu et al., “Explainable deep learning for efficient
and robust pattern recognition: A survey of recent developments,”
Pattern Recognition, vol. 120, p. 108102, 2021.

[2] Y. Liu et al., “A survey of stochastic computing neural networks for
machine learning applications,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 7, pp. 2809–2824, 2020.

[3] A. Ren, Z. Li, C. Ding et al., “SC-DCNN: Highly-scalable deep con-
volutional neural network using stochastic computing,” ACM SIGPLAN
Notices, vol. 52, no. 4, pp. 405–418, 2017.

[4] Z. Li, J. Li, A. Ren et al., “HEIF: Highly efficient stochastic computing-
based inference framework for deep neural networks,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 38, no. 8, pp. 1543–1556, 2018.

[5] B. Li, Y. Qin, B. Yuan, and D. J. Lilja, “Neural network classifiers using
stochastic computing with a hardware-oriented approximate activation
function,” in 2017 IEEE International Conference on Computer Design
(ICCD). IEEE, 2017, pp. 97–104.

[6] C. F. Frasser, P. Linares-Serrano et al., “Fully parallel stochastic com-
puting hardware implementation of convolutional neural networks for
edge computing applications,” IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[7] L. Sousa, “Nonconventional computer arithmetic circuits, systems and
applications,” IEEE Circuits and Systems Magazine, vol. 21, no. 1, pp.
6–40, 2021.

[8] H. Sim, D. Nguyen et al., “Scalable stochastic-computing accelerator for
convolutional neural networks,” in 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 696–701.

[9] H. Sim and J. Lee, “Bitstream-based neural network for scalable, effi-
cient, and accurate deep learning hardware,” Frontiers in Neuroscience,
vol. 14, p. 1198, 2020.

[10] S. Mittal, “A survey of FPGA-based accelerators for convolutional neural
networks,” Neural computing and applications, vol. 32, no. 4, pp. 1109–
1139, 2020.

[11] J. Li, A. Ren et al., “Towards acceleration of deep convolutional neural
networks using stochastic computing,” in 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC). IEEE, 2017, pp. 115–120.

[12] R. Hojabr, K. Givaki, S. R. Tayaranian et al., “SkippyNN: An embedded
stochastic-computing accelerator for convolutional neural networks,” in
56th Design Automation Conference (DAC). IEEE, 2019, pp. 1–6.

[13] H. Sim and ohters, “A new stochastic computing multiplier with applica-
tion to deep convolutional neural networks,” in 54th Design Automation
Conference (DAC). IEEE, 2017, pp. 1–6.

[14] H. Sim et al., “DPS: Dynamic precision scaling for stochastic
computing-based deep neural networks,” in 55th Design Automation
Conference (DAC). IEEE, 2018, pp. 1–6.

[15] Y. Zhang, R. Wang, X. Zhang, Y. Wang, and R. Huang, “Parallel hybrid
stochastic-binary-based neural network accelerators,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3387–
3391, 2020.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[17] N. Cheney, M. Schrimpf, and G. Kreiman, “On the robustness of
convolutional neural networks to internal architecture and weight per-
turbations,” arXiv preprint arXiv:1703.08245, 2017.

[18] A. Boopathy, T.-W. Weng, P.-Y. Chen et al., “CNN-Cert: An efficient
framework for certifying robustness of convolutional neural networks,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 3240–3247.

[19] C. Cheng and K. K. Parhi, “Fast 2D convolution algorithms for convo-
lutional neural networks,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 67, no. 5, pp. 1678–1691, 2020.

[20] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[21] A. G. Howard, M. Zhu, B. Chen et al., “MobileNets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

