
QDN: An Efficient Value Decomposition Method
for Cooperative Multi-agent Deep Reinforcement

Learning

Zaipeng Xie1,2,Yufeng Zhang1,2, Pengfei Shao1,2, and Weiyi Zhao3

1Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, China
2College of Computer and Information, Hohai University, Nanjing, China

3The University of Hong Kong, Hong Kong, China

Email: {zaipengxie, yufengzhang, pengfeishao}@hhu.edu.cn, wyzhao99@connect.hku.hk

Abstract—Multi-agent systems have recently received signif-
icant attention from researchers in many scientific fields. The
value factorization method is popular for scaling up cooperative
reinforcement learning in multi-agent environments. However,
the approximation of the joint value function may introduce
a significant disparity between the estimated and actual joint
reward value function, leading to a local optimum for cooperative
multi-agent deep reinforcement learning. In addition, as the
number of agents increases, the input space grows exponentially,
negatively impacting the convergence performance of multi-agent
algorithms. This work proposes an efficient multi-agent rein-
forcement learning algorithm, QDN, to enhance the convergence
performance in cooperative multi-agent tasks. The proposed
QDN scheme utilizes a competitive network to enable the agents
to learn the value of the environmental state without the influence
of actions. Hence, the error between the estimated joint reward
value function and the actual joint reward value function can be
significantly reduced, preventing the emergence of sub-optimal
actions. Meanwhile, the proposed QDN algorithm utilizes the
parametric noise on the network weights to introduce random-
ness in the network’s weights so that the agents can explore
the environments and states effectively, thereby improving the
convergence performance of the QDN algorithm. We evaluate
the proposed QDN scheme using the SMAC challenges with
various map difficulties. Experimental results show that the QDN
algorithm excels in the convergence speed and the success rate in
all scenarios compared to some state-of-the-art methods. Further
experiments using four additional multi-agent tasks demonstrate
that the QDN algorithm is robust in various multi-agent tasks and
can significantly improve the training convergence performance
compared with the state-of-the-art methods.

Index Terms—Deep reinforcement learning, cooperative multi-
agent systems, convergence performance

I. INTRODUCTION

Multi-agent systems (MAS) [1] have received major atten-

tion from researchers in many scientific fields in recent years.

Many real-world problems can be solved using cooperation

among multiple agents, such as autonomous driving [2], traffic

signal control [3], and distributed decision-making [4]. These

agents can often make independent decisions and cooperate
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to form a cooperative multi-agent system [5]. It is desired

to focus on helpful information in the environment to quickly

get valuable samples and thus obtain positive reward feedback

under limited time and resources. However, the number of

states and the action spaces of agents increases exponentially

with the expanding scale in cooperative multi-agent scenarios

and hence leads to dimensional disaster [6]. However, many

methods, such as the value function approximation methods

[7], the state clustering method [8], and the hierarchical rein-

forcement learning [9], can be used to mitigate the dimensional

disaster problem to some extent. In these methods, experience

is usually buffered to instruct the agent to select the best

actions in a specific state. Because the agents interact with

the environment for experience acquisition, the exploration to

accumulate experience can lead to an increased convergence

time. Therefore, the number of state spaces and the selection of

suboptimal actions [10] are the key factors in the convergence

speed of the cooperative multi-agent system.

Learning in cooperative MAS can be difficult [11] due to

the existence of partial observability and the local viewpoints

of agents. A Partially Observable Markov Decision Process

(POMDP) [12] may capture the dynamics of many real-world

environments by explicitly acknowledging that the sensations

received by the agents are only partial glimpses of the un-

derlying system state. POMDP can be described as a 6-tuple

(S, A, P , R, Ω, O), where S, A, P and R, are the states,

actions, transitions, and rewards; and Ω is a set of all possible

observational vectors of o. This observation is generated

from the underlying system state according to the probability

distribution o ∼ O(s). In the general case, estimating a Q-

value from observation can be inefficient because Q(o, a|θ) �=
Q(s, a|θ). In the POMDP settings, the agent usually only gets

noisy and incomplete observations about the true nature of the

state. An optimal action choice cannot be made based on its

current observations. Consequently, the agent may be unable

to choose the optimal action, eventually leading to a slower

convergence.

This work introduces a novel reinforcement learning

scheme, Q-Decomposition Network (QDN), to mitigate the

local optima problem and improve the convergence speed.
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The proposed QDN scheme utilizes a competitive network

to enable the agents to learn the value of the environmental

state without the influence of actions. Hence, the error between

the estimated joint reward value function and the actual joint

reward value function can be significantly reduced, preventing

the emergence of sub-optimal actions. Meanwhile, the pro-

posed QDN algorithm utilizes the parametric noise on the

network weights to randomize the network’s weights so that

the agents can explore the environments and states effectively,

thereby improving the convergence performance of the QDN

algorithm. Our contributions can be summarized as follows:

• We propose an improved multi-agent reinforcement learn-

ing algorithm based on the Q-Decomposition Network

(QDN). Our algorithm utilizes the competitive network

structure to enable agents to learn the value of the

environmental state. The error between the estimated joint

reward value function and the actual joint reward value

function can be reduced to prevent the agent from getting

suboptimal rewards.

• Our proposed QDN algorithm uses a network structure

called Stochastic Net that can randomly perturb the state

information at the early stage of training. Furthermore,

Stochastic Net takes the global state as an input to miti-

gate the partial observability and maximize the rewards.

• We choose SMAC as the evaluation environment for the

proposed QDN algorithm by varying the difficulty of

the SMAC scenarios. The experimental results show that

the QDN algorithm excels in the convergence speed and

success rate in all scenarios compared to some state-

of-the-art methods. We extend our algorithm for four

additional multi-agent tasks, and the experimental results

demonstrate that the QDN algorithm can achieve a decent

performance in various multi-agent tasks.

II. RELATED WORK

Multi-agent deep reinforcement learning frameworks [13]

can tackle high-dimensional state and action spaces in MAS

tasks. However, the error between the estimated and actual

action values may lead to the agents falling into the local

optima [14]. Hence, several methods [15]–[20] have been

proposed to mitigate the problems.

Hasselt et al. [15] propose a Double Deep Q-learning

(DDQN) algorithm to decouple the action selection and eval-

uation using different value functions, thereby reducing the

overestimation of the Q value by DDQN during the training

process. Schaul et al. [16] propose a Prioritized Replay Deep

Q-learning algorithm (DQN) that adds an experience buffer

ordered by experience priority. The experience buffer can

assign different weights to each experience sample. The agent

can learn from the essential experience samples to speed up

training and obtain rewards quickly. However, the experience

samples are collected at fixed intervals, and much historical

information is ignored. Sunehag et al. [17] propose the Value-

Decomposition Network (VDN) algorithm to decompose the

joint action-value function into a simple summation of the

action-value function of each agent. Rashid et al. [18] propose

the QMIX algorithm to remove the restriction on the represen-

tation of the centralized joint action-value function in the VDN

algorithm. However, the monotonicity constraint imposed by

the QMIX algorithm is a sufficient but unnecessary condition.

There are some scenarios where the value function may not

be accurately fitted by QMIX [21]. Son et al. [19] propose the

QTRAN algorithm to relax further the restriction on the cu-

mulative or monotonic relationship between joint action-value

function and individual action-value function in the VDN and

QMIX algorithm. However, the QTRAN algorithm may not

satisfy the exact Individual-Global-Max (IGM) consistency

[19] due to approximations. Yang et al. [20] propose the Qatten

algorithm to simplify the joint action-value function to a low-

order linear combination of individual action-value functions.

They use a multi-head attention mechanism neural network to

approximate the joint action-value function.

In recent years, the Centralized Training with Decentralized

Execution (CTDE) framework [17] has been widely used in

many multi-agent reinforcement learning frameworks. CTDE

allows each agent to learn the action value function in a

decentralized manner, and then individual actions can be

centralized to fit the joint action value function. As the size

of the multi-agent system scales up, the computational com-

plexity of the joint action value function grows exponentially,

which may prolong the convergence time of the algorithm.

Lowe et al. [22] propose a multi-agent deep deterministic

policy gradient algorithm, where each agent has its Actor-

network, Critic network, and reward function. However, the

input space grows exponentially when the number of agents

increases. Iqbal et al. [23] propose a multi-actor-attention-

critic algorithm by introducing an attention-based mechanism

to allow agents to focus on other agents to learn the Critic

network selectively. However, in simple multi-agent tasks, the

attention mechanism sometimes prolongs the convergence time

of the algorithm. Therefore, it is necessary to explore the

value decomposition method under the CTDE framework for

improving the convergence performance of cooperative MAS.

III. MOTIVATIONS

The existing value decomposition algorithms [17]–[19] usu-

ally employ approximations for their joint reward value func-

tion and thus may not accurately apprehend the relationship

between the joint reward value function and the local reward

value function. Consequently, agents may fall into the local op-

tima in a complex multi-agent scenario, increasing exploration

time. In some sparse rewards tasks, the exploration spaces may

grow exponentially [24] when the number of agents scales

up, leading to a significant increase in the convergence time

performance. In general, the convergence time performance is

impacted by the local optima and the scale of the state space.

A. Effect of local optimum on the convergence speed

The VDN [17] method is one of the first algorithms that

propose the decomposition of the joint reward value function

to solve the convergence speed problem shown in Eq.1.

Qtot(s, a) =
∑n

i=1 Qi(si, ai), (1)
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where Qtot(s, a) is the joint reward value function, s is the

global state, a is the selected joint action, i is the ordinal agent

number, and n is the number of all agents. The VDN algorithm

approximates the local reward value function Qi(si, ai) of a

single agent to the joint reward value function Qtot(s, a). Then

the algorithm updates Qtot(s, a) using DQN, and after that, the

gradient is passed backward through Qtot(s, a) to Qi(si, ai)
to achieve a global perspective to update the agent based on

the local information-based Qi(si, ai). However, VDN cannot

represent the non-summing relation Qtot(s, a) well.

The QMIX [18] algorithm takes advantage of centralized

training by capturing the additional available state informa-

tion during the training. QMIX assumes that the relationship

between Qtot(s, a) and Qi(si, ai) is monotonically increasing

because the ultimate goal is to learn a higher Qtot(s, a). All

parameters in the QMIX neural network are restricted to be

non-negative, thus satisfying the following equation:

∂Qtot(s, a)

∂Qi(si, ai)
≥ 0, ∀i ∈ [1, n] (2)

However, the relationship between Qtot(s, a) and Qi(si, ai)
can be limited due to these assumptions. The approximate

Qtot(s, a) can differ significantly from the actual value. Thus

it may not be able to fit complex MAS tasks and lead to a

degraded convergence performance.

The authors of REFIL [25] propose an attention-based Q-

value hybrid network in QMIX to generate a random mask

group of agents. REFIL utilizes a generalized form to describe

the relationship between the joint reward value and the local

reward value function without imposing additional assump-

tions and constraints. It can promote generalization across

tasks by breaking value function predictions into reusable

components.

QTRAN [19] removes the restriction between the joint

reward value function and the local reward value function

so that [Qi(si, ai)]
n
i=1 satisfies the Individual-Global-Max for

Qtot(s, a) as long as the individual optimal action and optimal

joint action are guaranteed to be the same. Therefore, the

relationship for Qtot(s, a) is not necessarily required, and thus

QTRAN can be applied to more general complex multi-agent

scenarios. Hence, Qtot(s, a) can be obtained by cumulative

approximation. Since the cumulative Qtot(s, a) and the real

Qtot(s, a) are much different, the compensation term V (s)
is introduced [19] to offset the gap between them. However,

QTRAN cannot prevent the agents from being stuck in local

optima.

In summary, the joint reward value function estimation can

be inefficient in the state-of-the-art MADRL methods. In more

general and complex scenarios, the agents may easily fall

into local optima; hence, obtaining a fast convergence rate

in MADRL is still challenging.

B. Effect of state spaces on the convergence speed

Some value decomposition algorithms [26] rely on random

perturbation of the agent’s strategy. However, due to the ran-

domness, the perturbation-based exploration can be inefficient

[26] in a complex multi-agent environment. Figure 1 shows an

example that illustrates the effect of the number of state spaces

on the value-decomposition-based convergence speed, where

six state spaces are presented, and the agent explores from

state space 1 to state space 6 using the ε-greedy algorithm. The

1 2 3 4 65

(1,0.5,0) (1,0.5,10)

(0,0.3,0)

(1,0.5,0) (1,0.5,0) (1,0.5,0)

(0,0.3,0)(0,0.3,0)(0,0.3,0)(0,0.3,0)

Reward transition

Fig. 1. Example diagram of the state transition process

triad represents: (direction, probability, reward). The direction

can be 0 or 1, indicating the left and right direction; the

probability indicates the possibility of taking actions, and the

reward describes the expected reward value. If the agent takes

the same action with the same reward without constraint, it

can quickly learn the action from state 1 to state 6. However,

only state 5 to state 6 can obtain the reward value in Fig. 1.

Therefore, the probability that the agent reaches state 6 and

obtains the reward is P = 0.3m × 0.5n (m,n are the number

of times moving left and right). As the number of spaces

explored by the agents grows, the probability of reaching the

goal may go to zero and the convergence performance of

the MADRL algorithm can be negatively impacted. Hence,

exploring methods to improve the convergence performance

of the MADRL algorithm is still an open research topic.

IV. METHOD

We propose an improved multi-agent reinforcement learn-

ing scheme, Q-Decomposition Network (QDN), to improve

the convergence performance of MAS. This algorithm uses

random noise and competitive networks for value function

estimation to improve the convergence performance of the

value decomposition algorithm in large-scale cooperative MAS

tasks. Our scheme mainly consists of three neural networks,

namely, the Agent Net, the Stochastic Net, and the Compet-

itive Net, and each neural network is built in a modular way.

Figure 2 illustrates the flow of the proposed QDN scheme.

The Agent Net decouples the environmental state assessment

and action value assessment and converts the input informa-

tion, including observed value oti of the agent at moment t
and action at−1

i at moment t−1, into the corresponding value

function Qi(τi).
The Stochastic Net is a random noise neural network that

can perturb the state information explored by the agents to

avoid reward sparsity. The Stochastic Net combines Qi(τi)
with global state St perturbed by a noise parameter as the

weight, then it outputs the agent’s reward value function Qi(τ)
based on the global information τ .

The Competitive Net can facilitate agents learning the

environmental state’s value by decomposing the joint reward

value function into the state value function and the dominance

value function. Using Competitive Net can reduce the error

between the estimated value and actual value and prevent
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value function 
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1
2 2(o , )t ta
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Agent_Net1

Agent_Net2

Agent_Netn

Value function Value function 

Stochastic_Net1

Value function 
2 2( )Q

Value function 
2 2( )Q

Stochastic_Net2

1(o , )t t
n na

Value function 
Stochastic_Netn

1( )Q

Reward value function
2 ( )Q

Reward value function

1 1( )Q

Fig. 2. Algorithmic flowchart of the proposed QDN algorithm.

the agents from choosing actions with suboptimal rewards.

The Competitive Net also translates the IGM consistency into

an easy-to-implement dominance function by taking range

constraints, thus facilitating the learning of value functions.

Algorithm 1 presents the detailed procedure of the proposed

QDN scheme.

Algorithm 1: QDN algorithm

Input: Agent number i, observation value oti at

moment t, action at−1
i executed at previous

moment t− 1, global state St, experience

buffer size d, training rounds m, update cycle

T of Target Agent Net

Output: Joint reward value function Qtot

1 for episode = 1 to m do
2 for timestep = t− 1 to t do
3 Send oti and at−1

i to Eval Agent Net;

4 Save (St, St+1, o
t
i, a

t
i, Qi(τi)) as D;

5 if episode%T = 0 then
6 Parameters: Eval Agent Net →

Target Agent Net
7 else if D > d then
8 Empirical sampling

9 else
10 Send St and Qi(τi) to Stochastic Net;

11 Random noise perturbs St;

12 St and Qi(τi) for weighted summation;

13 Get Qi(τ) based on τ ;

14 Send St and Qi(τ) to Competitive Net;

15 Decompose Qi(τ) into Ai(τ) and Si(τ);
16 Ai(τ) ← δ ·Ai(τ);
17 Atot(τ) ←

∑n
i=1 Ai(τ);

18 Stot(τ) ←
∑n

i=1 Si(τ);
19 Qtot ← Atot(τ) + Stot(τ);
20 end
21 end

A. Agent Net

The Agent Net network is devised to evaluate the fitness of

the agent’s action. Its input and output layers are implemented

as a multilayer perceptron (MLP), and the hidden layers con-

sist of Gate Recurrent Unit (GRU). Because the multi-agent

environment is considered partially observable, we believe this

problem can be mitigated by adding recurrent neural network

layers. The GRU is not computationally intensive and can be

easy to train. All traces during execution are saved to the

experience pool, including the states, observations, actions,

and rewards, for the training of GRU.

Figure 3(a) describes the internal structure of Agent Net.

The input to Agent Net is the observation oti of agent i
at moment t and its action at−1

i performed at the previous

moment. The output is value function Qi(τi) of agent i based

on local information τi. The state information of hidden layer

at moment t − 1 and moment t are denoted as ht−1
i and ht

i.

ReLU is employed as the activation function. We implement

the Agent Net using a similar idea as the Deep Q-networks

described in [27], where two neural networks with the iden-

tical structure are implemented, namely the Eval Agent Net

and Target Agent Net. The Eval Agent Net is updated using

gradient descent, while the Target Agent Net is randomly

initialized and updated by a direct copy of the val Agent Net’s

parameters after a fixed batch of training. This implementation

can significantly improve the stability of our proposed QDN

algorithm. The Eval Agent Net receives input information

(oti,a
t−1
i ) of agent i and it send the parameters of its network to

the corresponding Target Agent Net after a fixed time step to

minimize the correlation between data. The Target Agent Net

updates its loss function after receiving new parameters and it

saves the tuple (St,St+1,oti,a
t
i,Qi(τi)) in its experience buffer.

If the experience buffer is full, not only are Target Agent Net

parameters updated but also the experiences with the same

observation in the buffer are grouped.

B. Stochastic Net

The Stochastic Net is a neural network that consists of

a random noise module and a weighted summation mod-
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MLP

MLP
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Joint reward value function 

St
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Fig. 3. The structures of the proposed Agent Net, Stochastic Net and Competitive Net

ule, as shown in Fig.3(b). A random function perturbs the

Stochastic Net’s weight and bias parameters to facilitate the

agent’s information exploration. The parameters of the random

noise module introduce uncertainty to the network parameters,

which can be adaptively adjusted during the training process.

Its input information is the agent’s reward value function

Qi(τi) based on local information τi and current global state

St at moment t. The random noise module adds parameterized

noise to St and randomizes the network’s weight and bias

parameters. The weighted summation module then combines

Qi(τi) and St and outputs the agent’s reward value function

Qi(τ) based on the global information. The effect of noise

perturbation on global state St is mainly to weaken the

influence of partial observability in a cooperative multi-agent

environment. It also combines the agent’s global and local

state information to speed up the exploration efficiency in the

early stage of the agent’s training. The noise parameter θ in

the random noise module is defined as give by

θ = μ+
∑

	ε, (3)

where μ and
∑

are vectors of learnable noise parameters, ε
is a vector of zero-mean noise with a fixed statistic, and 	
denotes element-by-element multiplication. The output of the

noise layer can be described by

y = (μw + σw 	 εw) · x+ μb + σb 	 εb, (4)

where x is global state St sent to random noise module, and y
is state St

′ after noise randomization perturbation. The weight

parameter term μw + σw 	 εw should be a positive number

for the agent to receive beneficial feedback. Its parameters

and loss function are updated after Stochastic Net outputs the

reward value function Qi(τ) for each agent based on the global

information τ .

C. Competitive Net

Competitive Net decomposes joint reward value function

into state value function and dominance value function. It

divides the difference of each agent by dominance function,

which enhances the agent’s perception of a complex multi-

agent environment and motivates the agent to complete the

cooperative task better and faster. Competitive Net also re-

defines the Individual-Global-Max (IGM) principle [28] as

dominance function-based IGM. The Competitive Net con-

verts IGM consistency into a constraint on the range of values

of the dominance function. It also eliminates the restriction on

the relationship between joint reward value function and local

reward value function; this makes QDN algorithm applicable

to more complex and variable cooperative multi-agent scenar-

ios and improves the generality of the QDN algorithm. The

structure of Competitive Net is shown in Fig.3(c).

Competitive Net takes reward value function Qi(τ) of all

agents based on global information τ and global state St

outputted by Stochastic Net as input. After summing the

reward value function Qi(τ), the estimated state value function

Si(τ) is obtained according to the current state of each agent.

The reward value function Qi(τ) minus state value function

Si(τ) gives the advantage value function Ai(τ) of each agent

based on global information τ , as given by

Ai(τ) = Qi(τ)− Si(τ). (5)

The dominance value function Ai(τ) can be used to measure

the fitness of actions performed by agents. After decomposing

Qi(τ) into Ai(τ) and Si(τ), a random noise module is added.

Each dominance value function Ai(τ) is based on global

information τ and Ai(τ) is multiplied by weight δ that is

trained by the random noise module to avoid the inability

to discriminate the good or bad actions of agents due to

identical agents’ dominance value functions Ai(τ). Then, the
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dominance value function τ ·Ai(τ) and the state value function

Si(τ) are summed to obtain Atot(τ) and Stot(τ) for each

agent after noise perturbation. Finally, Atot(τ) and Stot(τ) are

summed to obtain the joint reward value function Qtot(τ, a)
of the multi-agent system based on global information τ . The

joint reward value function Qtot(τ, a) can be described as

follows:

Qtot(τ, a) = Stot(τ) +Atot(τ)

=
∑n

i=1 Qi(τ) + δ ·∑n
i=1 Ai(τ)

(6)

Equation 6 shows that the magnitude of the joint reward value

function Qtot(τ, a) is constrained by the range of values of

the dominant value function Ai(τ). This constraint does not

need to consider the relationship between the local reward

value function Qi(τ) and Qtot(τ, a) as in the traditional

value decomposition algorithm. Thus, the QDN algorithm

fully expresses IGM and is suitable for more general and

complex multi-agent scenarios. After the value decomposition

of each agent, Competitive Net updates its parameters and loss

function and distributes the updated information to each agent,

where an action strategy is developed as the joint reward value

function Qtot(τ, a) is obtained. The observation value and

action value are hence fed into Agent Net, and the previous

value decomposition process is repeated until the training is

terminated.

V. EXPERIMENT

A. Experimental Setup

We choose StarCraft 2 (SMAC) [29] as the test environment

for the proposed QDN scheme. All the agents receive a

positive reward after defeating an opposing combat unit. The

total reward for the entire multi-agent system equals to the

overall received rewards for all the damages inflicted on the

enemy combat units. Twelve SMAC maps are used, including

1c3s5z, 2s3z, 2s vs 1sc, 3s5z, 3s vs 5z, 5m vs 6m, 5s10z,

8m, 10m vs 11m, 25m, MMM, so many baneling. The dif-

ficulty of the maps varies from the easy to difficult level. Our

proposed QDN scheme is compared with the performance of

the RELIF [25], QTRAN [19], QMIX [18] and VDN [17]

algorithms.

In addition to the SMAC multi-agent challenge, we elect

four additional multi-agent tasks for the experiments to

demonstrate the robustness under various test environments

[30], including Pass, Secret-room, Push-box, and Island.

In the training experiments, each agent develops its strategy

based on the local observation and performs the actions

according to its own strategy. The discount factor γ for the

cumulative reward of all agents is 0.98, the learning rate α
is 0.005, the experience buffer contains a maximum of 5000
experience tuples, and 1000 experience tuples are adopted at

each time. The Eval Agent Net sends its parameter list to

the Target Agent Net every 500 batches. The intermediate

dimension of the network layer is 32 for the Agent Net and

64 for both the Stochastic Net and the Competitive Net. The

maximum number of time steps for all experiments is five

million.

B. Experimental Results

1) The convergence performance using SMAC: The com-

parison of our proposed QDN scheme and four state-of-the-art

algorithms are presented in Fig. 4. The results are the average

of each algorithm running five times with different random

seeds.

We observe that the average success rate of the proposed

QDN algorithm fluctuates and converges to about 95% after

one million timesteps in the easy SMAC challenges. The

average success rates of both the REFIL and QTRAN algo-

rithms can reach 90% at 1.5 million timesteps. Although the

average success rate of REFIL and QTRAN is comparable

with that of QDN, the convergence speed is much slower

than our proposed QDN scheme. Furthermore, the VDN and

QMIX algorithms are the worst among all algorithms. The

average success rate of the VDN and QMIX algorithms

stabilizes at about 75%∼80%. However, both algorithms ex-

hibit a slow convergence rate, requiring approximately 2.5

million timesteps to stabilize. Our proposed QDN scheme

excels in the convergence speed due to its extracting logical

topological relations between agents using random noise and

the competitive network.

For the maps with normal difficulties, the experimental

results show that, in the normal SMAC challenges, the average

success rate of the QDN algorithm stabilizes at approximately

95% after 1.5 million timesteps. Meanwhile, the REFIL,

QTRAN, QMIX and VDN algorithm do not behave as effec-

tively as our proposed QDN in terms of the convergence rate.

The average success rate of RELIF and QTRAN algorithms

can reach 90% after 2 million timesteps. Nevertheless, the

average success rate of QMIX and VDN algorithms can barely

reach 80% even after 4 million timesteps.

For the difficult SMAC maps, we can make a similar

conclusion about our proposed QDN scheme, i.e., the av-

erage success rate of the QDN algorithm stabilizes above

approximately 95% after 1.5 million timesteps. In contrast, the

QTRAN algorithm takes an average of 2.5 million timesteps to

reach a 95% success rate. In contrast, the convergence speeds

of RELIF, QMIX, and VDN deteriorate significantly in the

difficult SMAC maps. The average success rate of RELIF

algorithm stabilizes above approximately 95% after 4 million

timesteps. However, the average success rate of both QMIX

and VDN algorithms can barely reach 65% even after 5 million

timesteps.

In summary, we conclude that our proposed QDN scheme

excels in all the SMAC maps regarding the average success

rate. It can converge to 95% after about 1.5 million timesteps

in all maps. In contrast, the VDN and QMIX algorithms

cannot perform well in all challenges. The QTRAN and REFIL

algorithms perform slightly better in terms of the convergence

rate. However, neither algorithm can achieve a 95% success

rate within four million timesteps when the SMAC challenge

is difficult. Our proposed QDN algorithm is an excellent

candidate to boost the convergence performance, which is

capable of reaching a 95% success rate in a timely manner
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Fig. 4. The performance comparison of our QDN algorithm and four other algorithms in 12 SMAC challenges with varying map difficulties
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Fig. 5. The average evaluation rewards obtained by the agents versus the timesteps for four MAS tasks

for the SMAC challenges.

2) Evaluation using other MAS tasks: We extend our

experiments by using four additional MAS tasks, including

Pass, Secret-room, Push-box, and Island [30]. The purposes

of these experiments are to evaluate the QDN algorithm’s

robustness in various multi-agent challenges. Our proposed

QDN scheme is compared with RELIF, QTRAN, QMIX, and

VDN algorithms. Each algorithm runs five times using varying

random seeds, and the results are averaged for demonstration.

Figure 5 presents the average rewards obtained by the agent

versus the timesteps. A maximum of three million timesteps

is used in these experiments.

We observe that our proposed QDN method can give

the highest average rewards compared to four state-of-the-

art algorithms, including RELIF, QTRAN, QMIX, and VDN.

Furthermore, the convergence performance of our proposed

QDN algorithm is also slightly better than that of the four

counterparts, i.e., it requires 0.6 million timesteps to get sta-

bilized at the maximum rewards. In comparison, the QTRAN

algorithm performs the worst in Island and Push box tasks;

the QMIX performs the worst in the Secret room task, and

the VDN performs the worst in the Pass task. The RELIF

algorithm can achieve a similar convergence performance

as our QDN scheme, but its stabilized rewards are slightly

lower than the QDN algorithm in all four MAS challenges.

Therefore, we conclude that our proposed QDN scheme excels
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in all four different MAS challenges regarding the average

rewards and the convergence performance.

VI. CONCLUSION

This work proposes an improved multi-agent reinforcement

learning method, QDN, to implement an efficient cooperative

multi-agent reinforcement learning framework. The proposed

QDN scheme utilizes a competitive network to enable the

agents to learn the value of the environmental state without the

influence of actions. Hence, the error between the estimated

joint reward value function and the actual joint reward value

function can be reduced, preventing the emergence of sub-

optimal actions. Meanwhile, the proposed QDN method em-

ploys the parametric noise on the network weights to random-

ize the network’s weights so that the agents can explore the

environments effectively, thereby improving the convergence

performance of the QDN algorithm.

We evaluate the proposed QDN scheme using the SMAC

challenges with various map difficulties. The experimental

results show that the QDN algorithm excels regarding the

convergence performance and the success rate in all challenges

compared to some state-of-the-art methods. Furthermore, we

extend our experiments using four additional multi-agent tasks,

including Pass, Secret-room, Push-box, and Island. The experi-

mental results demonstrate that the QDN algorithm is robust in

various MAS tasks and can significantly improve the training

convergence performance compared with the state-of-the-art

methods.
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