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Abstract—Asynchronous federated learning is a distributed
machine learning paradigm that may alleviate the impact of
straggler nodes and improve the efficiency of federated training.
However, some nodes can become sluggish, and node dropout may
frequently happen for various reasons, such as network connec-
tion constraints, energy deficits, and system faults. Consequently,
the global model may deviate from the desired convergence
direction and lead to suboptimal results. This work proposes
an asynchronous federated learning framework, FedDGIC, to
mitigate the impact of the node dropout problem. The proposed
framework can improve training efficiency by utilizing a dynamic
grouping algorithm with gradient compensation. Experiments
are performed in a real federated learning environment using
two datasets, i.e., MNIST and CIFAR-10. Compared with three
state-of-the-art methods, the proposed FedDGIC can significantly
improve training efficiency and provide reliable asynchronous
federated learning.

Index Terms—Asynchronous federated learning, node dropout,
model convergence, dynamic grouping, gradient compensation

I. INTRODUCTION

Federated learning (FL) is a machine learning paradigm [1]

where many clients collaboratively train a model under the

coordination of the parameter server while keeping the training

data decentralized. However, straggler devices, especially the

dropouts, can frequently appear due to many factors [2] such as

device heterogeneity, network constraints, and energy deficit.

Hence, a decrease in training efficiency may happen due

to device dropouts [3]. Asynchronous federated learning [3]

may alleviate the impact of straggler devices and improve

the efficiency of federated training by eliminating the waiting

for stragglers during model aggregation. However, the data

among devices are often non-independently and identically

distributed (non-IID) [1] in an actual FL implementation.

The device dropout may lead to a discrepancy between the

original data distribution and the remaining training data

distribution. Consequently, the model convergence’s direction

can be biased from the original data distribution, resulting in

suboptimal training results. In addition, the global model may

lean toward representing the data from the living nodes, which

may negatively impact the model fairness [4]. So far, most
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of the existing asynchronous federated learning methods [5]–

[9] do not provide an active mechanism to compensate for

the model convergence’s direction caused by device dropouts.

Hence, it is desired to devise an improved federated learning

method for mitigating this issue.

This work introduces a novel asynchronous federated learn-

ing method, FedDGIC, that incorporates the dynamic grouping

algorithm with a gradient compensation algorithm. The pro-

posed method can improve the training efficiency in terms

of the training time and model accuracy when the data

distribution deviates due to device dropout in the asynchronous

federated learning framework. This method first categorizes

active working nodes into groups based on similarity matrices,

and the nodes within each group are considered to exhibit a

similar data distribution. When a node becomes a straggler

and fails to respond, our proposed method can resort to the

gradient compensation method to compensate for the lost

gradient using its group members, thus mitigating the impact

of device dropout and improving the training efficiency. The

main contributions of our research are as follows:

• We propose a novel method, FedDGIC, to compensate for

the lost gradient information caused by dropped devices.

Our method can correct the convergence direction of

the global model and thus significantly improve the

training efficiency and provide a reliable and efficient

asynchronous federated learning framework.

• Experiments are performed on the actual implementation

of the asynchronous federated learning framework using

the MNIST and CIFAR-10 datasets. A random number

of dropped devices are simulated, and the impact of the

varying non-IID data distribution is evaluated. Experi-

mental results demonstrate that our proposed FedDGIC

method outperforms the state-of-the-art algorithms in all

experiment scenarios.

II. RELATED WORK

Device heterogeneity exists in many federated learning

frameworks, where working devices may be slow to respond

and even drop out spontaneously during the training stage.

Several methods [10]–[13] are proposed to mitigate the impact

caused by stragglers in recent years. Li et al. [10] propose an

optimization algorithm, FedProx, by adding a proximal term

to help improve the stability of the federated learning process.
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This algorithm allows each participating device to perform

a variable amount of work to tackle device heterogeneity.

However, since devices in federation learning may join or drop

out frequently, it may still produce a deadlock by dropped

devices that are supposed to participate in training. Chen et

al. [11] propose a method to speed up the training process

under communication constraints. The method can effectively

reduce the communication rounds by selecting clients with a

significant update norm. However, fairness may not be ensured

for worker nodes with poor computational performance. Lai

et al. [12] propose choosing the best available nodes at

each round using the online exploration-exploitation strategy.

Although this method can select high-performance worker

nodes to avoid the delay caused by straggler or dropped

nodes, low-performance nodes may be ignored in the training

process. Chai et al. [13] propose a tier-based federated learning

system that can group devices into multiple tiers based on

their performance. Clients from the same tier can be selected

at each round to mitigate the straggler problem. However, the

individual client can become a straggler or dropout sporadi-

cally. Hence, it may require an additional scheme to reorganize

the tiers and degrade the system performance.

The research of asynchronous federated learning [5]–[9]

has attracted much attention in recent years. Asynchronous

federated learning can improve training efficiency by elimi-

nating node synchronizations. However, existing methods may

not be able to mitigate the missing gradients [14] caused

by dropout devices. It is desired to explore methods that

can prevent suboptimal training results and ensure the model

fairness [4]. Personalized federated learning (PFL) is a recent

technique [15] that exploits personalized models for devices

with data heterogeneity. Sattler et al. [16] propose a method

to group asynchronous PFL clients based on their similarity

of the gradient matrix using the model parameters, and the

PFL training can be implemented in a cluster-based manner.

Ghosh et al. [17] propose to cluster the working nodes using

a K-means method. This method, however, is less flexible and

requires specifying the number of groups by the users. Liu et

al. [18] introduce a sparse representation of the CNNs to fa-

cilitate cluster-based PFL training, where the similarity of the

representations is used. However, due to the data heterogeneity

among nodes, it is challenging to set a reasonable number of

groups for large-scale PFL systems. The hierarchical clustering

method [19], [20] has been proposed to justify a reasonable

number of groups. However, its efficacy as a solution for

mitigating the dropped device problems is still unclear.

III. PROPOSED METHOD

A. Problem Analysis

Federated learning aims to obtain a model [1] that matches

the overall data distribution, and the model loss, F (W ), can
be given by

F (W ) =
1

N

∑

i∈[N ]

Ezi∼Dif(W ; zi) (1)

where W is the model weight and zi is the sampling of the

local dataset Di on nodei, and Ezi∼Dif(W ; zi) denotes the
loss expectation of the global model for the training dataDi on

nodei. If k nodes are dropped, the loss function of federated

learning can be written as

F ′(W ) =
1

N − k

∑

i∈[N−k]

Ezi∼Dif(W ; zi). (2)

Because the data in each node can be non-IID, the loss

expectation in each node can be different, as described by

Ezi∼Dif(W ; zi) �= Ezj∼Djf(W ; zj), ∀i �= ∀j. (3)

Hence, node dropouts may impose changes in the overall

data distributions across the working nodes, resulting in an

unexpected loss function for the global model, i.e., F (W ) �=
F ′(W ). Consequently, the optimization objective can be dis-

figured in this scenario.

This work proposes a gradient compensation-based asyn-

chronous federated learning framework, FedDGIC, to establish

a similarity matrix of the models. Based on this matrix,

the working nodes are clustered into groups, and gradient

compensation can be accomplished using the fellow worker

nodes within the group.

B. Method Description

The general process of the FedDGIC framework is divided

into two steps: (1) Dynamic grouping: the nodes are grouped

dynamically based on the similarity matrix of models. (2)

Gradient compensation: the system monitors the nodes’ status

and corrects the global model’s convergence direction, main-

taining a reliable model performance even under unexpected

node dropouts. Before we start the method description, we

summarize the important notations in Table I.

TABLE I
NOTATIONS

Notation Description
n Number of work nodes
H(·) Hierarchical clustering method
ncal Number of grouping times
g(i) Group to which nodei belongs
Vg(i) Lastest model update version in group g(i)
Vi Updated version submitted by nodei
T The threshold to limit the number of groups
Wg(i) A model of group g(i)
Wnew A model submitted from a node
αmax Maximum update ratio of group model aggregation
αgroup Update ratio of group model aggregation

αglobal
Update ratio of global model aggregation without
gradient compensation

Ng(i) Number of nodes in group g(i)
Dg(i) Number of dropped nodes in group g(i)
rc Compensation ratio

αcomp
Update ratio of global model aggregation after
gradient compensation

Wglobal Global model
Pdisorder A hyperparameter to control the degree of data non-IID
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1) Dynamic Grouping Algorithm: This algorithm consists

of two steps: First, we employ the cosine similarity method

[16] to generate the similarity matrix of models. At the same

time, the algorithm minimizes the impact of the varying scales

[20] of neural network layers. Second, we utilize a hierarchical

clustering method to divide the working nodes into groups

that can generate a tree structure, where the distance between

groups can gradually increase. During each iteration, two

groups with the smallest distance are clustered into one group,

and the inter-group distance, d(Gx, Gy), between group Gx

and Gy , as given by

d(Gx, Gy) =
1

|Gx||Gy|

⎛
⎝∑

i∈Gx

∑
j∈Gy

d(i, j)

⎞
⎠ , (4)

where i ∈ Gx, j ∈ Gy , and the distance d(i, j) =
wi · wj/(‖wi‖ · ‖wj‖) is the cosine similarity between nodei
and nodej . The cosine distance [16] of the weights measures
the difference in data distributions across clients and is not

affected by the scaling effects. Since the distance between

two merging groups increases proportionally at each clustering

iteration, we propose that the hierarchical clustering method

can dynamically calculate the number of groups. We define dk

as the minimum inter-group distance at the k-th aggregation

and dk ≥ dk−1. Therefore, The minimum inter-group distance

at the n-th clustering iteration is dn, where n is the number

of nodes. The increment of dk at each clustering iteration is

set to be (dn−1 − d1)/(n − 2). The hierarchical clustering

algorithm, as illustrated in Fig.1, can stop the clustering and

return the lists of the grouping result, given that the following

inequation satisfies:

(dk − dk−1) · (n− 2)

dn−1 − d1
> p. (5)

where p is a constraint pre-defined as the maximum ratio of the

minimum inter-group distance increment (p = 0.8 in default).

The grouping process can require some extra computational

cost on the parameter server due to the increased volume of

gradient exchange. On the other hand, the one-shot grouping

method [20], [21] may produce an inaccurate estimate, leading

to a degraded global model. Hence, we develop a dynamic

grouping tactic that can make a trade-off between the com-

putational cost and the fitness of grouping by choosing the

number of grouping operations, ncal, based on the number of

nodes n, where ncal is defined as in (6). We use the average

of the similarity matrix obtained after ncal grouping iterations

as the similarity matrix of the grouping result.

ncal =

{
2, n ≤ 8

�log2 n− 1�, n > 8.
(6)

The dynamic grouping algorithm is described in Algorithm 1

and its time complexity is O(n3).

Stop m
erging

In
te

r-g
ro

up
 d

ist
an

ce

Group1 Group2

Node3Node2 Node0 Node1 Node4

Fig. 1. An example of the dynamic grouping algorithm. The hierarchical
clustering method stops grouping when the inter-group distance between
Group1 and Group2 exceeds the threshold p.

Algorithm 1: Dynamic Grouping Algorithm

Input: Number of worker nodes n
Output: Grouping result r

1 Initial grouping times ncal according to Eq.(6);

2 Initialize a list of similarity matrices S;
3 for i in {1, 2, · · · , ncal} do
4 Accept updated weights from all nodes;

5 Calculate the similarity matrix S[i] among nodes in
round i;

6 end
7 Calculate mean of the similarity matrix

Savg ← 1
ncal

∑ncal

i=1 S[i];

8 Determine the number of groups according to Eq.(5);

9 Use the hierarchical clustering method to determine

grouping result r ← H(Savg);
10 return r;

2) Gradient Compensation Method: The exponential mov-

ing average algorithm [5] is usually employed to perform the

model aggregation in asynchronous federated learning. The

global model W is updated by aggregating the model Wnew

submitted by nodei, and the updated model Wt+1 is given by

Wt+1 ← (1− α) ·Wt + α ·Wnew, (7)

where hyperparameter α ∈ [0, 1) is the aggregate update ratio
of the global model and α determines the global model’s

convergence. We propose a gradient compensation method to

decide α adaptively. When a node submits its model update,

it first updates the group model. Then, the global model is

updated based on the group model using an α preselected

based on the number of dropped nodes within the group. We

utilize a version control algorithm to manage the stale updates

that can produce reliable training results. The version control

can be implemented via the update ratio of the group model

aggregation, αgroup, and the group model, Wg(i), as given by⎧⎨
⎩
αgroup =

αmax

1 + β ·max
(
Vg(i) − Vi −Ng(i), 0

)
Wg(i) ← αgroup ·Wnew + (1− αgroup) ·Wg(i)

(8)
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where αmax is the maximum update ratio of the group model

aggregation, g(i) represents the group ID of nodei, Vg(i) is the

latest model version in group g(i), Vi is the version of nodei,
Ng(i) is the number of members in group g(i), and β is a

positive parameter. Equation (8) indicates that the group model

Wg(i) is updated using the model from nodei by the ratio

αgroup. As the difference between the group version Vg(i) and

the node version Vi grows, the ratio αgroup decreases, leading

to a reduced contribution by the model weightsWnew provided

by nodei and reducing the impact of the stale updates.

After the group model updates, our algorithm can adaptively

choose the aggregation update ratio, αglobal, of the global

model to compensate for the missing gradient. It utilizes

a version monitoring algorithm to check the status of each

working node within the group. In this algorithm, we define

T as a timeout threshold. When Vg(i) − Vi ≥ T , nodei is

considered a dropout node. Once the parameter server detects a

node dropout, our proposed gradient compensation method can

take the fellow worker nodes in the group and compensate for

the gradient. The update ratio of the global model aggregation

after gradient compensation αcomp can be described as given

by

αcomp = 1− (1− αglobal)
rc (9)

where the hyperparameter αglobal is the update ratio of

the global model aggregation without gradient compensation,

rc = Ng(i)/(Ng(i) −Dg(i)) represents the compensation ratio,
Ng(i) is the number of nodes in group g(i),Dg(i) is the number

of dropped nodes in group g(i). The aggregated updates to the
global model Wglobal can be described as given by

Wglobal ← αcomp ·Wg(i) + (1− αcomp) ·Wglobal. (10)

When the number of dropped nodes in the group increases,

Wglobal is updated using the model from group membersWg(i)

by a modified contribution ratio αcomp.

For instance, consider a group of three nodes (i.e., Ng(i) =
3). If each node provides one update to the global model, the
proportion of the original global model in the latest update

is (1 − αglobal)
3, the proportion of model weights provided

by the group is 1 − (1 − αglobal)
3. When a node becomes

a dropout (i.e., Dg(i) = 1), the compensation ratio rc of its

fellow members is rc = Ng(i)/
(
Ng(i) −Dg(i)

)
= 1.5. If both

of the remaining two nodes provide one update to the global

model with αcomp = 1 − (1 − αglobal)
1.5, the proportion of

the original global model in the latest update is

(1− αcomp)
2 = (1− αglobal)

3. (11)

And the proportion of model weights provided by the other

two nodes is 1−(1−αglobal)
3. Hence, the group’s contribution

to the global model does not change in the presence of

dropping nodes.

An example of the proposed gradient compensation mech-

anism is illustrated in Fig.2. In this example, our FedDGIC

algorithm divides four working nodes into two groups, and

the Nodes within each group update in a similar direction.

Node1 and Node4 are trained to update the Group Model

1. Meanwhile, Node2 and Node3 are trained to update the

Group Model 2. When Node3 drops, our FedDGIC algorithm

can utilize Node2 as an interim agent to compensate for

the missing gradient of Node3, hence maintaining the global

direction of model convergence.

The pseudo-code for the proposed Gradient Compensation

method is summarized in Algorithm 2.

Algorithm 2: Gradient Compensation Method

Input: The grouping result r, the number Ng(i) of

members in each group, αglobal, αmax

Output: Global model Wtarget

1 Initialize model Wglobal = W0;

2 Initialize the group model Wg(i) = W0, i ∈ {1, · · · , k};
3 Initialize worker nodes version Vi = 0, i ∈ {1, · · · , n};
4 Initialize group version Vg(i) = 0, i ∈ {1, · · · , k};
5 Broadcast the initial parameter Wglobal to all nodes;

6 while f(Wglobal)− f(W∗) > ε do
7 Receive the update weight Wnew from nodei;
8 Determine the group g(i) which nodei belongs to;
9 Update the group model Wg(i) according to Eq.(8);

10 Vg(i) ← Vg(i) + 1;
11 Calculate the compensation ratio

rc ←
Ng(i)

Ng(i) −Nd(g(i))
;

12 αcomp ← 1− (1− αglobal)
rc ;

13 Update the global model according to Eq.(10);

14 Vi ← Vg(i);

15 Send Wglobal to nodei;
16 end
17 Wtarget ←Wglobal;

18 return Wtarget;

IV. EXPERIMENT

A. Experimental Setup

1) Environment Settings: The experiment is performed on

an actual implementation of a federated learning framework,

Parallel-SGD [22]. Our FL system consists of one parameter

server and twenty clients. Each client holds the same number

of training samples, and the number of dropout clients is

varied during the training to simulate actual node dropout.

We further quantify the degree of the data distribution to

verify the effectiveness of our FedDGIC, i.e., we sort the

training samples by their labels and then take out Pdisorder

percent of the samples for each label. We follow the FedAvg

method [1] to distribute data samples to twenty clients. We

randomly assign an equal amount of the remaining samples

to the twenty clients. When Pdisorder is 100, the result of the
sample distribution is fully non-IID. When Pdisorder is 0, the
distribution of samples at each client can be considered IID.

2) Datasets and Models: We use two popular datasets,

MNIST [23], and CIFAR-10 [24]. The MNIST dataset con-

tains 60,000 samples for training and 10,000 samples for

testing, in which each sample is a 28×28 bilevel image. The
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Fig. 2. An example of Gradient Compensation Method.

CIFAR-10 dataset contains 50,000 samples for training and

10,000 samples for testing, and each sample in CIFAR-10

is a 32×32 RGB image. Both datasets contain labels for ten

categories. For the MNIST dataset, we train a simple neural

network with three fully-connected layers. For the CIFAR-10

dataset, we employ a convolutional neural network that has

four convolutional layers and two fully-connected layers. For

simplicity, both networks do not utilize dropout layers and

max-pooling layers.

3) Baseline Methods: We compare FedDGIC against three

state-of-the-art asynchronous federated learning methods:

• FedAsync [6]: This method is an asynchronous FL

method using the exponential moving average algorithm

to update the global model.

• FedFG [19]: This method is implemented using the

Federated Fixed Grouping method based on the idea in

[19]. In this method, the number of groups is fixed, and

the group model does not use the gradient compensation

strategy when updating the global model.

• Sageflow [25]: This method can perform periodic global

aggregation and groups clients based on their model’s

staleness. The representative models are aggregated

among groups first and then contribute to generating

a global model using the exponential moving average

algorithm.

4) Hyperparameters: For both datasets, we use the SGD

optimizer with a learning rate η = 3 × 10−3 for the four

asynchronous federated learning methods. For the MNIST

dataset, the batch size is set to 30, and the local epoch is 5.

For the CIFAR-10 dataset, the batch size is 25, and the local

epoch is 4. We adopt cross-entropy as the loss function. We set

the global update ratio for all four methods as αglobal = 0.5.
For FedDGIC and FedFG, we set the group update ratio as

αgroup = 0.8. We perform the training for 100 epochs for

MNIST and 150 epochs for CIFAR-10.

5) Evaluation Criteria: We adopt three evaluation metrics

for our proposed method as follows:

• Reduction Ratio on Loss: This metric represents the

average improvement in the accuracy of our method

compared to the other methods on the test set in n epochs

(n = 100 for MNIST and n = 150 for CIFAR-10).

• Improvement Ratio on Accuracy: This metric represents

the average reduction in the loss of our FedDGIC method

compared to the other methods on the same test dataset.
• Speed-up Ratio: We set a desired accuracy and loss value
as the goal. Then, the required number of epochs to reach
that goal is utilized to estimate the training speed-up
S(m1,m2, t) of our method as compared to the other
methods given by

S(m1,m2, t) =
Epochs(m1, t)− Epochs(m2, t)

Epochs(m1, t)
(12)

where m1 represents the proposed FedDGIC method, m2
represents the compared methods, including FedAsync,

FedFG, and Sageflow, and the Epochs(m, t) represents
the number of epochs in time t.

We perform the experiments in two settings: In the first

setting, we compare the performance by varying the number

of dropped nodes under the same degree of non-IID data

distribution across the working nodes. In the second setting,

we compare each method’s performance when the number of

dropout nodes is the same while the degree of the non-IID

data distribution varies.

B. Experimental Results

Before the experiments start, we allocate an equal number

of training samples to the worker nodes. Then, after each

training round, the global model is utilized to evaluate the

model performance on the test dataset. Figure 3 describes

the experimental results on MNIST when three, five, and

seven nodes are dropped with Pdisorder = 40. Our FedDGIC
method is the best among all four methods, even though the
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three compared methods update the global model using the

exponential moving average algorithm. We observe that the

performance difference among the three compared methods is

trivial because of the gradient loss caused by the dropping

node. Table II summarizes the experimental results, showing

that our proposed FedDGIC method has an average speed-

up ratio of 19.59%, 17.65% and 20.45% under the various

number of node dropouts when Pdisorder = 40.

TABLE II
IMPROVEMENT OF FEDDGIC COMPARED TO STATE-OF-THE-ART

METHODS BY VARYING THE NUMBER OF DROPPED NODES ON MNIST

Method
Number of
Dropped
Nodes

Reduction
Ratio
on Loss

Improvement
Ratio

on Accuracy
Speed-up Ratio

FedAsync
3 5.57% 6.51% 16.86%
5 6.43% 6.91% 17.26%
7 6.87% 9.95% 24.65%

FedFG
3 3.89% 5.03% 14.29%
5 5.07% 5.41% 18.15%
7 5.20% 7.87% 20.50%

Sageflow
3 5.33% 7.54% 17.49%
5 5.87% 7.91% 18.57%
7 6.43% 9.64% 25.30%

Figure 4 illustrates the experiment results on CIFAR-10

when three, five, and seven dropout nodes are evaluated with

Pdisorder = 50. We observe that there is little difference

between the four methods in the early stage of the training

process, which may be caused by the underfitting of the

model. The FedDGIC method, however, performs the best

among all methods after 20 rounds of training. This is because

FedAsync, FedFG, and Sageflow methods do not handle

the dropout nodes well. Meanwhile, FedDGIC employs the

gradient compensation and alleviates the model’s deviation

caused by dropout nodes. Table III shows the comparison

results of various methods on CIFAR-10 when the number of

dropped nodes is 3, 5, and 7. We conclude that the FedDGIC

method has an average speed-up ratio of 21.82%, 16.22%, and

21.3% as compared to three other methods under the different

number of node dropouts and Pdisorder = 50.

TABLE III
IMPROVEMENT OF FEDDGIC COMPARED TO STATE-OF-THE-ART

METHODS BY VARYING THE NUMBER OF DROPPED NODES ON CIFAR-10

Method
Number of
Dropped
Nodes

Reduction
Ratio
on Loss

Improvement
Ratio

on Accuracy
Speed-up Ratio

FedAsync
3 1.58% 4.74% 20.37%
5 1.71% 5.48% 23.96%
7 1.67% 5.20% 21.14%

FedFG
3 1.06% 3.86% 13.13%
5 1.69% 5.27% 18.22%
7 1.63% 4.83% 17.30%

Sageflow
3 1.29% 3.96% 20.37%
5 1.67% 4.96% 22.57%
7 1.66% 5.24% 20.96%

We also compare the performance of each method by

varying the degree of non-IID data distribution when a certain

number of nodes are dropped. Under the condition that five

nodes are dropped, the comparison results on MNIST when

Pdisorder is 20, 40, and 60 are presented in Table IV. The

results show that our proposed FedDGIC method significantly

outperforms the FedAsync, FedFG, and Sageflow in terms

of loss and accuracy performance. For the MNIST dataset,

the FedDGIC method has an average speed-up of 15.98%,

17.25%, and 17.44% under the different data distribution

(Pdisorder = 20, 40, and 60), when the number of node dropout

is 5. Table V shows the improvement of the FedDGIC method

on CIFAR-10 when Pdisorder is 30, 50, and 70. The average

speed-up is 23.55%, 18.65%, and 23.87%.

TABLE IV
IMPROVEMENT OF FEDDGIC COMPARED TO STATE-OF-THE-ART
METHODS USING VARIOUS DATA DISTRIBUTIONS ON MNIST

Method Pdisorder

Reduction
Ratio
on Loss

Improvement
Ratio

on Accuracy
Speed-up Ratio

FedAsync
20 6.51% 7.13% 18.82%
40 6.43% 6.91% 16.26%
60 5.42% 4.12% 12.85%

FedFG
20 5.59% 6.93% 20.76%
40 5.07% 5.41% 18.15%
60 3.88% 4.10% 12.85%

Sageflow
20 7.50% 8.36% 20.50%
40 5.87% 7.91% 18.57%
60 4.84% 5.19% 13.27%

TABLE V
IMPROVEMENT OF FEDDGIC COMPARED TO STATE-OF-THE-ART
METHODS USING VARIOUS DATA DISTRIBUTIONS ON CIFAR-10

Method Pdisorder

Reduction
Ratio
on Loss

Improvement
Ratio

on Accuracy
Speed-up Ratio

FedAsync
30 1.95% 7.49% 25.66%
50 1.71% 5.48% 23.96%
70 1.65% 5.29% 21.03%

FedFG
30 1.74% 5.74% 21.64%
50 1.69% 5.27% 18.22%
70 1.62% 5.13% 16.08%

Sageflow
30 1.96% 7.07% 23.64%
50 1.67% 4.96% 22.57%
70 2.10% 7.32% 25.40%

In summary, the experimental results demonstrate that the

proposed FedDGIC method can mitigate the negative impact

of dropout nodes, providing an improved loss and accuracy

performance compared with three state-of-the-art methods.

Although all methods are based on the exponential moving

average algorithm, our proposed FedDGIC method can serve

as a reliable and efficient asynchronous federated learning

framework in actual implementations.

V. CONCLUSION

Devices participating in federated learning are often unreli-

able, where dropout nodes and straggler problems can signif-

icantly impact performance. Existing asynchronous federated

learning methods can improve the efficiency of model aggre-

gation. However, node dropout may lead to varying data dis-

tribution, causing the global model to deviate and reducing the

accuracy and training efficiency of the global model. This work

proposes an asynchronous federated learning framework based
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Fig. 3. Loss and accuracy of different methods on MNIST test set when three, five, and seven nodes are dropped.
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Fig. 4. Loss and accuracy of different methods on CIFAR-10 test set when three, five, and seven nodes are dropped.

on dynamic grouping and gradient compensation (FedDGIC)

to address this problem. The proposed FedDGIC dynamically

groups nodes based on the similarity matrix of models among

nodes. It uses the nodes alive within the same group for

gradient compensation when a node drops out. In order to

verify the effectiveness of FedDGIC, we perform experiments

with different numbers of dropped nodes in a certain degree of

data non-IID distribution. We also conduct experiments with

various degrees of non-IID distribution of data, but the number

of dropped nodes is fixed. The proposed FedDGIC method is

compared with some of the state-of-the-art methods, including

FedAsync, FedFG, and Sageflow. The results demonstrate that

FedDGIC outperforms the three methods on both MNIST and

CIFAR-10 datasets in all experimental scenarios.
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