
Deep Skill Chaining with Diversity for
Multi-agent Systems*

Zaipeng Xie1,2(B), Cheng Ji2, and Yufeng Zhang2

1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,
Hohai University, Nanjing, China

2 College of Computer and Information, Hohai University, Nanjing, China
{zaipengxie,chengji,yufengzhang}@hhu.edu.cn

Abstract. Multi-agent reinforcement learning requires the reward sig-
nals given by the environment to guide the convergence of individ-
ual agents’ policy networks. However, in a high-dimensional continuous
space, the non-stationary environment may provide outdated experiences
that lead to the inability to converge. The existing methods can be inef-
fective in achieving a satisfactory training performance due to the inher-
ent non-stationary property of the multi-agent system. We propose a
novel reinforcement learning scheme, MADSC, to generate an optimized
cooperative policy. Our scheme utilizes mutual information to evaluate
the intrinsic reward function that can generate a cooperative policy based
on the option framework. In addition, by linking the learned skills to form
a skill chain, the convergence speed of agent learning can be significantly
accelerated. Hence, multi-agent systems can benefit from MADSC to
achieve strategic advantages by significantly reducing the learning steps.
Experiments are performed on the SMAC multi-agent tasks with varying
difficulties. Experimental results demonstrate that our proposed scheme
can effectively outperform the state-of-the-art methods, including IQL,
QMIX, and hDQN, with a single layer of temporal abstraction.

Keywords: Reinforcement learning · Multi-agent systems · Temporal
abstraction · Mutual information · Skill discovery

1 Introduction

As one of the most promising technologies to realize general AI, reinforcement
learning has become one of the main focuses of multi-agent system research.
Unlike the typical supervised or unsupervised learning with data set, reinforce-
ment learning algorithms are learned via interactions. The agent continuously
learns knowledge according to the rewards obtained, making it more adaptable
to the environment. However, in reality, many complex problems cannot be mod-
eled as a single agent interacting with the environment. Instead, they should be
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modeled as multi-agent collaboration or competition problems [1]. As a popular
research area in distributed AI, a multi-agent system (MAS) can solve many
complex real-time dynamic problems, such as network routing collaboration [2],
trash recycling problems [3], and urban traffic control [4].

Recently, the state-action space’s nonstationary property and its exponential
growth have received much attention [5]. Several works have proposed multi-
agent reinforcement learning (MARL) algorithms to improve policy effectiveness
and convergence speed. However, these methods can be incompetent when a large
number of agents learn simultaneously.

The basic paradigm of deep reinforcement learning (DRL) is a two-stage
rule: the Evaluation Stage and the Improvement Stage [6]. On this premise, the
agent’s policy network needs to continuously improve the accuracy driven by
the reward signals from the environment. However, in a collaborative MAS, we
consider how each agent’s policy network converges to the optimal state while
the collaborative policies between different agents are still suboptimal. This is
often difficult because the input to the policy networks of the agents may not
be a direct global state. All the agents are simultaneously interacting with and
learning from the environment. For an individual agent, its fellow agents can also
be a part of the environment, leading to constant changes in the environment
[7], i.e., one’s best policy may change as the other agents’ policies update.

We propose a method named Multi-agent Deep Skill Chaining (MADSC) that
can effectively enable agents to extend their actions via temporal abstraction.
Furthermore, we utilize the intrinsic reward to inspire cooperation and guide
the agents’ exploration trajectories. A neural network is developed based on the
value decomposition method to aggregate the policy functions of each agent.
Hence, our proposed algorithm can significantly improve the convergence speed
and performance of cooperative policy networks in MAS.

2 Related Works

In a large-scale MAS, it can be infeasible to train each agent separately. Existing
multi-agent reinforcement learning approaches [8–10] often employ a centralized
training, decentralized execution(CTDE) method, where centralized Q-networks
are used for training the global network to stabilize the evaluation process. Mean-
while, a decentralized execution approach can be employed, allowing each agent
to use their observations as a critical basis for decision-making during execution.

Rashid et al. [11] proposed an algorithm named QMIX to solve the credit
assignment problem. By using the decomposition of the value function, QMIX
can improve the efficiency of cooperation. However, evaluating the utility of each
agent’s behavior in MAS can be difficult as all agents are performing simulta-
neously. Bacon et al. [12] propose that the abstraction of learning tasks can be
based on the option that is essentially a sequence of actions to complete the
corresponding sub-tasks in a specific state subspace. The option itself can be
considered a unique action that consists of an action set, including the primi-
tive action. Tang et al. [13] propose hDQN, a hierarchical control structure is
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constructed through the invocations between the upper and lower policy layers.
In addition, various optimization algorithms have been proposed to improve the
convergence speed. For example, Deep Skill Network (DSN) [14] combines the
hierarchical scheme with the deep Q-learning algorithm to improve the reusabil-
ity of existing trained skills. Hindsight Experience Replay method [15] integrates
the experience pool design with the hierarchical approach to improve the expe-
rience sampling of the layered learning efficiency.

In the options framework, skill is often modeled as an option [16]. When
an agent explores a particular environment state, its observations can directly
determine the actions performed in the following multiple time steps at the macro
level. Sharma et al. [17] propose a skill discovery method, using the mutual
information between state sequences and potential skills to construct internal
rewards that encourage agents to explore a collection of skills with diversity.
Bagaria et al. [16] propose deep skill chaining that can autonomously discover
skills in high-dimensional continuous domains. The algorithm constructs skills
that implicitly represent relationships between several related skills, allowing an
agent to execute the skill chain sequentially. However, the lack of an efficient
exploration method may still lead to a decline in the algorithm’s convergence
performance.

3 MARL with Skill Discovery

A Markov Decision Process can be formally defined as (N,S, P,R, γ). When mul-
tiple agents are involved, MDP is no longer satiable to describe the environment
because the agents’ actions are strongly correlated with the overall environment
state. Thus we can extend the definition of MDP into Markov games [18], also
called stochastic games. The definition of a Markov game [18] can be described
as (N,S, {A(i)}i∈N , P, {R(i) }i∈N , γ) , where N is the total number of agents, S
is the overall state distribution, {A(i)}(i∈N) represents the set of all agents, and
P,R, γ are state transition, reward function, and discount factor correspondingly.

3.1 How Agents Learn their Policies

There are various methods [19–21] to learn a policy in an MDP. One popular
method opts to learn an action-value function Qπ(st, at), i.e., the sum of the
cumulative rewards that the agent may achieve according to the current policy.
And the goal for each agent is set to maximize the value of this action-value
function give by π(st) = arg maxa Q(st, at), where at and st denote the action
and state at time t. The dynamic migration process of MAS can be described by
st+1 = ft(st,at), where ft is the environment-dependent deterministic function,
and at denotes the joint-action. The reward function, as the extrinsic reward
RE , can be defined as a linear sum of the rewards of all the agents given by
RE =

∑
st,at∈τ(i) R(st,at), where τ (i) is the state trajectory of the i-th agent.
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3.2 Option Framework

The concept of the option framework is derived from the temporal abstraction
technique [22] in hierarchical reinforcement learning (HRL). An option can be
formally defined as ω ∈ Ω � (Iω, πω, βω), where Ω denotes all the available
options. All options consist of three parts: the set of initial states Iω, the inter-
nal policy πω, and the set of termination states βω. The agent uses the option
internal policy πω to select actions at low-level time steps to interact with the
environment. The option internal policy can map the state s to the low-level
action a.

3.3 Problem Formulation

Consider a MAS with a CTDE architecture, and the option framework is
employed based on HRL temporal abstraction for learning and updating the
behavioral policies of each agent. From each agent’s perspective, its option inter-
nal policy learns each primitive action a

(i)
t on the low-level time scale and updates

the policy parameters through a deep policy network. Our goal on the low-level
time scale is to maximize the cumulative rewards of all the primitive actions.
Meanwhile, on the high-level time scale, due to the use of temporal abstraction,
each agent trains their option policy π

(i)
Ω to select the applicable option at the

high-level temporal sequence.
We assume a greedy approach to measure the sum of rewards of all agents

in a collaborative MAS and choose an option that maximizes the high-level Q-
function. Our optimization goal can be formally described as:

π
(i)
Ω ∈ arg max

πω

E

[
N∑

i=1

Tmax∑

t=1

R(st, a
(i)
t )

]

, (1)

where Tmax is the time budget available to the agent when an option is applied.
If the time budget is reached, the control of the option is reclaimed, and the
option policy πΩ determines the next option candidate.

4 Methodology

4.1 Option Learning in MAS

All the agents can start constructing an option repository. The option repository
within every agent is defined by

O = {ω
(i)
k | (I

ω
(i)
k

(st) = 1) ∩ (β
ω

(i)
k

(st) = 0)}, (2)

where the I
ω

(i)
k

and β
ω

(i)
k

denote the initiation set and termination set, ω
(i)
k

represents the i-th agent’s k-th option. We denote ωG as the global option whose
Tmax = 1. As the agents explore the environment and exploit their experiences,



212 Z. Xie et al.

their option repository can be adaptively expanded. We use a simple binary
classifier to train and predict the initiation set. If an agent reaches a specific
target state and successfully triggers the β(st) function of the option for K
times, we train it with a sequence of state trajectories of length k as the input to
the classifier p(ω(i)

k | τ
(i)
k ). During the classifier’s training, its output determines

how each agent may execute the option at an appropriate state trajectory.
In general, the independent Q-learning (IQL) method [23] can be adequate

to fulfill the requirements of training policy networks with improved Q value
prediction accuracy. However, the IQL method may not be able to promote col-
laborations among agents and lead to suboptimal results. Therefore, to mitigate
the issue, we proposed to set up a Mixer network at the top layer of our proposed
learning framework and the network employs a value decomposition algorithm
similar to that in the QMIX [11] algorithm.

4.2 Skill Chaining for MARL

The option is considered a skill that can be combined to achieve improved results.
Bagaria et al. [16] propose that skills chaining can produce an improved conver-
gence performance in single-agent tasks. Since it is desired to improve training
performance in MAS, we aim to build the skill chain for each option. However,
establishing a skill chain can be hindered because the agent may not be able
to reach the goal state due to the non-stationary problem, resulting in poor
exploration efficiency and deteriorated convergence performance.

To solve the abovementioned performance bottleneck, we propose a DRL
scheme, named multi-agent deep skill chaining (MADSC), to improve the con-
vergence performance in MAS. The proposed MADSC scheme can optimize the
MAS architecture based on the skill chaining technique.

Fig. 1. Diagram of MADSC with the option framework

Figure 1 shows the overall diagram of the proposed MADSC scheme. Each
agent has a complete repository of options and is independently selected and
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trained by an option policy. Meanwhile, agents are coordinated through a Mixer
network denoted as Qtot. For each agent, its policy network πΩ is updated
through Q-learning,The update target yt is given by

yt =
τ∑

t′=t

γt′−trt′ + γτ−t · QΩ(st+τ , arg max
ω(i)

Q(st+τ , ω)), (3)

where τ denotes the trajectory of all time steps. Hence, the option policies of
each agent is updated at each training step with the update target yt.

The key to the skill chaining is to make the initiation set of the current option
ωi intersect with the termination set of the next option ωi−1. The agents can
naturally execute the next option when the option is executed to its termination
set. Hence, it is desired that the learning of the initiation set Iωi

is continuously
trained until it is accurate during the training process. For each agent, the con-
dition βωi+1 = Iωi

needs to be satisfied, so that the current option ωi can be
chained successfully to the next option. Figure 2 illustrates the diagram of the
skill chaining process.

Fig. 2. Diagram of the skill chaining process

4.3 Mutual Information for Space Exploration

The mutual information is a general measure to describe the correlation between
two random variables, and it is defined as the KL-diversity [24] between the joint
distribution p(s;ω) and p(s) · p(ω) given by

I(S; Ω) =
∫∫

p(s, ω) log
p(s, ω)

p(s) · p(ω)
dsdω, (4)

Maximizing mutual information of two random variables in deep learning train-
ing has been shown to perform well in many other domains [25–27]. A high
mutual information between the state distribution S and the option sample dis-
tribution denotes that the uncertainty of the state distribution can be reduced
when the option ω(i) is fixed. Thus, we can effectively increase the diversity of
the exploration with a maximized mutual information.

In our proposed MADSC method, the option’s internal policy network
is driven by the rewards from the environment. Meanwhile, the high-level
cooperative policy is updated using a combination of intrinsic and extrinsic
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rewards constructed through mutual information. We define the high-level value
decomposition-based cooperative policy as πtot. Therefore, our goal is to maxi-
mize the mutual information between the state trajectory distribution p(τ) and
the sample distribution of option ω(i). The resulting construction of the intrinsic
reward function RI for the i-th agent can be written as

R
(i)
I = I(S; Ω) − 1

N

N∑

i=1

I(S;ω(i)) = log p(Ω | S) − 1
N

N∑

i=1

log p(ω(i) | st) (5)

The rewards function is implemented to promote efficient exploration in MDP
and mitigate the performance bottleneck in the skill chain technique. Therefore,
the reward that ultimately update the policy Qtot is a mixture of extrinsic and
intrinsic rewards given by

R∗(τ, ω) = α ·
∑

st,at∈τ(i)

γtR(st,at) + (1 − α) ·
N∑

i=1

R
(i)
I , (6)

where
∑

st,at∈τ(i) γtR(st,at) denotes the extrinsic rewards RE and RI represents
the intrinsic reward, γt is the discount factor where lower values are placed on
immediate extrinsic rewards. The parameter α is defined as a factor that may
be used to regulate the contribution of the intrinsic reward. We incorporate the
mixer network to process the Q-value generated by each agent so that each policy
update can be coordinated and directed by the central mixer network.

Algorithm 1: The MADSC process running on the central server
Init : Initialize with env.reset(), set parameters Tmax for option framework

Global option for each agent: ωG = (I
ω
(i)
G

, β
ω
(i)
G

, Tmax = 1)

Initialize Agents’ option repository O ← {ωG}
1 while time steps t < Max training steps N t do
2 if (t%evaluate cycle==0) then
3 forall Agents do
4 Evaluate current policies and record win rates

5 forall Agents do
6 while t < Tmax do

7 Sample current option ω
(i)
t with π

ω
(i)
k

(st) = arg max
a
(i)
t ∈a t

Qπ
ω(st, at)

8 Execute option ω
(i)
t and save experiences

9 Update π
ω
(i)
k

(st) using Q-learning and append it to O

10 Generate intrinsic reward RI using Eq. (5)
11 Update Qtot using RI and extrinsic rewards RE sampled from experiences
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Algorithm 2: The MADSC process running on the individual agent
Init : Get state st, observation obst, βω(i)(st) ← 0

1 low-level time scale t0 = t
2 Tmax is the option’s time budget
3 while st is not the termination state do
4 while (βω(i) == False) and (t < Tmax) do

5 a
(i)
t ← πω(i)(obst)

6 rt, st+1 ← env.step()
7 t ← t + 1
8 st ← st+1

9 Train option initiation set Iω(i) with binary classifier

Since our MADSC scheme is developed for the CTDE architecture, it has
two major processes: the first process is for centralized training, and the second
process is for decentralized execution. Algorithm 1 summarizes the process run-
ning on the centralized server, where all the information required including the
observations and state trajectories are collected and fed into the policy networks.
Then the central server uses information to train those networks. Algorithm 2
describes the process running on an individual agent, where each agent utilizes
its observation as an input to the policy network and subsequently selects an
action and executes it.

5 Experimental Evaluations

In order to evaluate the performance of our proposed MADSC algorithm, we
have performed multiple experiments using the StarCraft II (SMAC) [28] as the
multi-agent test environment. In the experiments, we vary the difficulty of the
SMAC maps and train our agents for three million time steps.

5.1 SMAC Environment Setup

We choose various maps of StarCraft II as the evaluation MAS environment. The
main purpose is to train a group of agents for a cooperative goal, i.e., defeating
the AI rival. Table 1 summarizes the information of the SMAC maps.

We first evaluate the performance by varying the value of α, and the results
show that when α = 0.7, we can achieve the best result. In addition, for the
Option’s time budget Tmax, we set Tmax = 300 as commonly used in most state-
of-the-art work on SMAC.
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Table 1. SMAC maps for our experimental evaluations

Name Ally units Enemy units Map difficulty

2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots Easy

3m 3 Marines 3 Marines Easy

1c3s5z 1 Colos,3 Stalkers,5 Zealots 1 Colos,3 Stalkers,5 Zealots Normal

3s5z 3 Stalkers, 5 Zealots 3 Stalkers, 5 Zealots Normal

8m vs 9m 8 Marines 9 Marine Normal

8m 8 Marines 8 Marines Normal

10m vs 11m 10 Marines 11 Marines Hard

25m 25 Marines 25 Marines Hard

Corridor 6 Zealots 24 Zerglings Hard

5.2 Mutual Information Evaluation

Due to the inherent property of POMDP, the experiences can be outdated when
the agents interact with the environment. Decision policies based on the inval-
idated samples may prevent the agents from obtaining the maximum expected
return in the subsequent training process.

Ideally, we expect that agents can effectively converge to a target state using
a skill chain. We also desire that the skill chains be constructed backward sequen-
tially until the s0 state of the MDP is included in the initiation set. However,
in a large MAS, the states evolve rapidly as each agent interacts with the envi-
ronment. The agents may not observe the global state directly. Thus, using
skill chains may also lead to the trap of a local optimal due to the ineffective
exploration, resulting in poor convergence of the policy networks. We propose
to incorporate the mutual information between the state trajectory distribu-
tion and the option sampling distribution and the mutual information is used
to construct the intrinsic rewards of the high-level strategy network. Figure 3
demonstrates the average win rate of our proposed MADSC with and without
mutual information.
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Fig. 3. Comparison of the mutual information in MADSC using intrinsic rewards
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The construction of intrinsic rewards is based on the mutual information I(S; Ω)
between the state distribution p(s) and the ω sampling distribution p(ω). Hence,
the convergence of exploration can be effectively secured against falling into the
local optimum. We observe that, on the MAS tasks, including 8 m, 2s3z, our
method converges after 0.5 million time steps by utilizing the mutual information
reward method. Meanwhile, the vanilla multi-agent skill chaining shows some
difficulty reaching convergence even at three million steps.

5.3 Performance Evaluation

To evaluate the efficiency of our proposed MADSC scheme, We also compared
the convergence performance of MADSC and some state-of-the-art MARL algo-
rithms, including QMIX, IQL, and hDQN. The evaluation results are demon-
strated in Fig 4.

A total of nine SMAC maps are utilized in the evaluation with various dif-
ficulties. The experiments are categorized into three difficulty levels, i.e., easy,
normal, and hard. The main difference between each map exists in the number
of agents and the difficulty variations in achieving the target state.

Our method can generally achieve the best performance among four cooper-
ative MARL algorithms. For the easy-level maps, including 8 m, 2s3z, because
the action-state space is relatively small, both our MADSC method, QMIX, and
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hDQN can achieve an average 90% win rate after 0.5 million time steps. How-
ever, IQL does not perform well for map 2s3z. For hard-level maps, e.g., 25 m,
10m vs 11m, corridor, our MADSC method can still perform well and converge
to an average 90% win rate after 2.5 million time steps. The QMIX algorithm
demonstrates a similar performance only on the 25m task, but a deteriorated
convergence performance on the 10m vs 11m and corridor tasks. However, due
to the expanding size of the action-state space and the unpredictable transition
function of the state trajectories, the hDQN and IQL cannot converge within
the three million training time steps. For normal-level maps, such as 1c3s5z
and 8m vs 9m, our proposed MADSC method outperforms all three algorithms.
This is because our MADSC scheme allows the agents to diversify their choices
of the state trajectories by using the mutual information-based intrinsic rewards,
leading to efficient space exploration. In addition, our quest for high cumulative
reward expectations aims to find optimal strategies based on accurate predic-
tion performance. The exploration efficiency can prevent the agent’s policy from
falling into a local optimal and may eventually allow the policy network to con-
verge to high accuracy with a greater probability.

6 Conclusions

This paper proposes a novel MARL method, MADSC, for cooperative multi-
agents in macro-action level POMDPs to mitigate the nonstationary problem
and improve the convergence performance. Our approach introduces the tempo-
ral abstraction layer on MAS by building on HRL with the deep skill chaining
method. The proposed MADSC method incorporates the mutual information
to construct the intrinsic rewards that can prevent the policy networks from
converging due to non-stationary. We evaluate our proposed method using var-
ious challenge difficulties in the SMAC multi-agent tasks. Experimental results
demonstrate that our approach can effectively outperform some state-of-the-art
methods with skill chaining.
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